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Abstract
Background  The aim of this study was to develop and internally validate an interpretable machine learning (ML) 
model for predicting the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB) infection.

Methods  We retrospectively collected clinical data from patients with HCC and CHB treated at the Fourth Affiliated 
Hospital of Guangxi Medical University from January 2022 to December 2022, including demographics, comorbidities, 
and laboratory parameters. The datasets were randomly divided into a training set (361 cases) and a validation set 
(155 cases) in a 7:3 ratio. Variables were screened using Least Absolute Shrinkage and Selection Operator (LASSO) 
and multifactor logistic regression. The prediction model of HCC risk in CHB patients was constructed based on five 
machine learning models, including logistic regression (LR), K-nearest neighbour (KNN), support vector machine 
(SVM), random forest (RF) and artificial neural network (ANN). Receiver operating characteristic (ROC) curve, calibration 
curve and decision curve analysis (DCA) were used to evaluate the predictive performance of the model in terms of 
identification, calibration and clinical application. The SHapley Additive exPlanation (SHAP) method was used to rank 
the importance of the features and explain the final model.

Results  Among the five ML models constructed, the RF model has the best performance, and the RF model predicts 
the risk of HCC in patients with CHB in the training set [AUC: 0.996, 95% confidence interval (CI) (0.991–0.999)] and 
internal validation set [AUC: 0.993, 95% CI (0.986-1.000)]. It has high AUC, specificity, sensitivity, F1 score and low Brier 
score. Calibration showed good agreement between observed and predicted risks. The model yielded higher positive 
net benefits in DCA than when all participants were considered to be at high or low risk, indicating good clinical 
utility. In addition, the SHAP plot of the RF showed that age, basophil/lymphocyte ratio (BLR), D-Dimer, aspartate 
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Introduction
Liver cancer is one of the top 10 malignancies listed by 
the World Health Organization as a serious threat to 
human health and safety. According to statistics (Glo-
bocan 2022), approximately 865,273 new cases of liver 
cancer are reported worldwide annually, ranking it sixth 
amongst malignant tumours. Approximately 757,906 
people are estimated to die from liver cancer, making it 
the third most common malignant tumour [1]. China 
has a high incidence of liver cancer, accounting for about 
50% of the world’s liver cancer cases. China has an esti-
mated 367,657 new cases and 316,544 deaths from liver 
cancer each year, making it the fourth and second larg-
est country in terms of morbidity and mortality from 
malignant tumours, respectively [2]. Hepatocellular 
carcinoma(HCC) is the most common primary liver can-
cer, accounting for 75–85% of all cases [3]. Hepatitis B 
virus (HBV) infection is a major risk factor for HCC in 
China. About 69.9% of Chinese HCC patients report-
edly have a background of HBV infection [4]. China is 
the country with the largest HBV-infected population, 
accounting for about one-third of the world’s infected 
population [5]. In China, approximately 90 million people 
are infected with HBV, and an estimated 300,000 people 
die from HBV-related diseases each year [6]. Addition-
ally, HBV infection increases the risk of cirrhosis and 
HCC, and according to a cohort study, patients with HBV 
infection have a 16.1-fold increased risk of HCC [7]. HCC 
is also highly latent in the early stage, and only about 36% 
of Chinese patients are preliminarily diagnosed and eli-
gible for treatment in the early stage. The remaining 9% 
and 55% are in the intermediate and late stages, respec-
tively [8]. Partial hepatectomy is one of the main treat-
ments of HCC. However, the rate of local recurrence can 
be as high as 70% at 5 years after primary hepatectomy 
[9]. Therefore, early and accurate prediction of the risk of 
HCC in HBV-infected individuals is urgently needed.

Risk-prediction models aid in the early detection, diag-
nosis, and treatment of diseases in high-risk populations 
and have been applied to cardiovascular diseases and 
tumours [10, 11]. Several models can reportedly pre-
dict the risk of HCC in patients with chronic hepatitis, 
including GAG-HCC, CU-HCC, REACH-B, REACH-B 
II, LSM-HCC, PAGE-B, REACH-B, etc [7, 12]. However, 
the above models primarily focus on the population from 

Korea, Hong Kong, and Taiwan, or the Caucasian popula-
tion. Studies on inland samples of the Chinese population 
are lacking. The applicability of these models to Chinese 
populations is uncertain because Chinese populations 
have different living environments, lifestyles, socioeco-
nomic status, dietary cultures, and genetic characteris-
tics from those in other parts of the world. Models such 
as the LSM-HCC risk model [13] have predictors that 
are difficult to detect in the clinical practice or contain 
too many items. Consequently, the calculation becomes 
more complicated and unsuitable for clinical practice. 
Finally, the aforementioned risk-prediction models are 
constructed mostly using traditional statistical methods. 
Given that the interaction mechanism between the risk 
factors of liver cancer is non-linear, the traditional linear 
regression model and logistic regression models are inad-
equate to solve the collinearity problem [14], and arti-
ficial intelligence can improve this problem to a certain 
extent. Currently, artificial intelligence including machine 
learning (ML) and deep learning is being used in medi-
cal research and practice. HCC risk prediction also needs 
to make full use of artificial intelligence for diagnosis, 
prognosis, and treatment to improve prediction accu-
racy. Therefore, using artificial intelligence to establish an 
HBV-related liver cancer risk-prediction model based on 
Chinese population with high accuracy and convenient 
clinical application is urgent.

ML is one form of artificial intelligence. It involves 
algorithmic methods that allow machines to learn how 
to solve problems without having to write specific pro-
grammes [15]. Over the past decade, ML applications in 
medicine have exploded, particularly in oncology [16]. 
As a complex, diverse, and prevalent group of diseases, 
cancers present challenging diagnostic problems and 
abundant data across multiple modalities, making clini-
cal oncology a strong area for ML. Wang et al. [17] used 
ML algorithms to build a prostate cancer risk-prediction 
model based on common clinical indicators to provide 
evidence for diagnosing prostate cancer. Hou et al. [18] 
built a distant-metastasis prediction model for papil-
lary thyroid cancer based on nine ML models, including 
Logistic Regression(LR), Decision Tree(DT), Random 
Forest(RF), and K-Nearest Neighbors(KNN). By compar-
ing the performance of the models, they found that the 
RF model had the best predictive ability and selected 

aminotransferase/alanine aminotransferase (AST/ALT), γ-glutamyltransferase (GGT) and alpha-fetoprotein (AFP) can 
help identify patients with CHB who are at high or low risk of developing HCC.

Conclusion  ML models can be used as a tool to predict the risk of HCC in patients with CHB. The RF model has the 
best predictive performance and helps clinicians to identify high-risk patients and intervene early to reduce or delay 
the occurrence of HCC. However, the model needs to be further improved through large sample studies.
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the best predictive model. Recently, Korean researchers 
used a ML algorithm to build a PLAN-B model including 
10 factors of cirrhosis, age, platelet count, type of NAs, 
gender, alanine aminotransferase(ALT), HBV DNA level, 
albumin, bilirubin, and HBeAg status in 6,051 patients 
with chronic hepatitis B(CHB) treated with entecavir 
(ETV) or tenofovir fumarate (TDF). It was validated in 
the Korean cohort (C-statistic of 0.79, 95% confidence 
interval (CI): 0.78–0.80) and the Caucasian cohort 
(C-statistic of 0.81, 95% CI: 0.79–0.83) and was found to 
have better predictive ability for HCC than previously 
reported models [19]. The above study demonstrates 
the feasibility of applying ML to disease prediction. As 
mentioned earlier, several models can predict the risk of 
developing HCC in patients with CHB. However, many 
studies have not yet used ML techniques or have mod-
els that lack the interpretability to adequately capture 
the complex relationships between variables and provide 
clinically actionable explanations. Today’s medical infra-
structure generates a significant amount of data. There-
fore, more sophisticated methods rely on this data to 
develop more accurate models. Selecting clinically acces-
sible predictors based on HBV cases in China is urgently 
needed. Combining ML technology can help develop 
interpretable models, which can improve the accuracy 
of liver cancer prediction and establish an efficient liver 
cancer risk-prediction model for CHB patients that is 
convenient for clinical practice.

The present study aimed to develop and validate an 
interpretable ML model for predicting the risk of HCC in 
patients with CHB. The SHAP method was used to clar-
ify the importance of the features and to interpret model 
predictions and thus determine the practical significance 
of the model for predicting the occurrence of HCC. To 
construct the model, this study enrolled patients with 
HBV-related HCC and patients with CHB infection as 
study subjects and systematically collected epidemiologi-
cal survey data (e.g., demographic information: gender, 
age, family history, history of smoking, and alcohol con-
sumption), comorbidities (liver cirrhosis, diabetes, and 
hypertension), and clinical serological test data (routine 
blood tests, liver function, coagulation function, alpha-
fetoprotein(AFP), HBV-DNA, etc.). Nearly 63 indicators 
were subjected to inter-variable descriptive and univari-
ate analyses. After screening the predictors by LASSO-
logistic regression, five ML models were constructed. The 
effects of the predictive models were compared to obtain 
the optimal model and to interpret the model. A predic-
tion model was then established to assess the risk of HCC 
in the clinic and predict the risk of HCC in patients to 
implement prompt interventions and thus provide a ref-
erence basis for the prevention and treatment of HCC.

Methods
Information on research participants
This study was a case-control type. We collected clini-
cal data of 393 patients with HCC and 263 patients with 
CHB virus infection admitted to the Fourth Affiliated 
Hospital of Guangxi Medical University from January to 
12, 2022 through the inpatient electronic medical-record 
system. Inclusion criteria for patients with HCC were as 
follows: (1) based on the Guidelines for Diagnosis and 
Treatment of Primary Liver Cancer (2024 Edition) [20], 
patients were diagnosed as primary HCC, consistent 
with the diagnosis of HCC in the 10th Revision of the 
International Classification of Diseases (ICD-10:C22.0); 
(2) HBV-associated HCC; (3) complete clinical data; (4) 
patients had BCLC stages A, B and C. Exclusion criteria 
were as follows: (1) combined with primary tumours of 
other systems infection with other hepatotropic viruses; 
(2) accompanied by autoimmune liver disease, hepa-
tolenticular degeneration, drug-induced liver disease 
accompanied by other serious diseases; (3) samples for 
laboratory indicators were collected after treatment (such 
as surgery, radiofrequency ablation, chemotherapy, or 
immunotherapy) had started; (4) patients not diagnosed 
with HCC for the first time; (5) under the age of 18 years. 
Patients diagnosed with CHB having complete clinical 
data and receiving antiviral therapy such as ETV or TDF 
were selected as the control group. In the end, 516 sub-
jects were identified, including 273 cases and 243 control 
cases. The samples were randomly divided into a train-
ing set and a validation set using a 7:3 stratification, with 
361 subjects in the training set and 155 subjects in the 
validation set. Details of the study design are shown in 
Fig. 1. This work was conducted in accordance with the 
Declaration of Helsinki and was reviewed by the Ethics 
Committee of the Fourth Affiliated Hospital of Guangxi 
Medical University (approval number: KY2021070). This 
study was retrospective and all data were anonymised, so 
informed consent was not required.

Data collection
Based on the purpose of this research and with reference 
to relevant clinical experience and the characteristics of 
patient information, the following data were collected: (1) 
demographic information including gender, age, height, 
and weight; (2) daily living habits including history of 
smoking and alcohol consumption; (3) chronic disease 
conditions including liver cirrhosis, diabetes, hyperten-
sion, cerebral infarction, coronary heart disease, arrhyth-
mia, and renal insufficiency; (4) routine blood tests 
including white blood cell, neutrophil (NE), lymphocyte 
(Lym), monocyte, eosinophil, and red blood cell counts, 
haemoglobin, hematocrit, mean corpuscular volume, 
RBC distribution width-SD(RBC-SD), RBC distribution 
width-CV (RBC-CV), platelet count, platelet clotting 
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time, platelet distribution width, and mean Corpuscu-
lar Volume; (5) liver and kidney functions including ala-
nine aminotransferase (ALT), aspartate aminotransferase 
(AST), AST/ALT ratio, total bilirubin, direct bilirubin, 
indirect bilirubin, total bile acid, total protein, albumin 
globule ratio (A/G), alkaline phosphatase, and γ-glutamyl 
transferase (GGT); (6) coagulation function including 
prothrombin time, international normalised ratio, acti-
vated partial thromboplastin time, thrombin time, fibrin-
ogen, and D-Dimer; (7) HBV-DNA and AFP.

Calculation of relevant indicators
Relevant indicators were calculated as follows: body 
mass index (BMI) = weight/height2, NE–Lym ratio(NLR), 
platelet–Lym ratio(PLR), NE–monocyte–Lym 
ratio(NMLR), systemic immune-inflammation index(SII), 

Lym–monocyte ratio(LMR), NE–Lym ratio(NPR), 
platelet–Lym ratio (PAR), eosinophil–Lym ratio (ELR), 
basophil– Lym ratio (BLR), and red-cell distribution 
width–platelet count ratio (RPR), which were derived 
from peripheral blood to assess the inflammatory status 
of the body. The formulas were as follows: NLR = NE/
Lym, PLR = platelet/Lym, NMLR = NE×monocyte/
Lym, RPR = RDW-SD/platelet, SII = platelet count × NE 
count/Lym count, LMR = Lym count/monocyte count, 
NPR = NE count/platelet count, PAR = platelet count/Lym 
count, ELR = eosinophil count / Lym count, BLR = baso-
phil count/Lym ratio, and RPR = RBC distribution width/
platelet.

Fig. 1  Flow chart of the study design
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Outcome indicator
The main outcome index of this study was whether the 
patient had HBV-related HCC. Based on available clinical 
indicators of hospitalised patients with CHB and HCC, 
five predictive models were developed and internally vali-
dated using ML algorithms to assess the risk of HCC in 
patients with CHB.

Data pre-processing and feature selection
All laboratory indicators were continuous and unclassi-
fied. Before building the model, the presence of data out-
liers for continuous variables was checked and replaced 
by the corresponding extreme values. Categorical data 
were processed using coding methods. To avoid data 
leakage, the above data pre-processing was performed on 
the training and validation sets, respectively. To improve 
data utilisation, variables with more than 30% data loss 
were excluded before data imputation. Data groups with 
a missing rate of less than 30% were processed by replac-
ing normal distributions with the mean, non-normal dis-
tributions with the median, and non-numerical data with 
the mode.

Additionally, LASSO regression analysis was adopted 
to screen for potential risk predictors by using non-zero 
coefficient variables and the best penalty parameters of 
the model. The LASSO regression analysis was cross-
validated 10 times to select penalty parameters, and pre-
dictors were initially screened when model error was 
minimised. The predictors screened by LASSO regres-
sion were further analysed by multi-factor logistic regres-
sion to determine the most important clinical factors. 
To assess collinearity between variables, the variance 
inflation factor (VIF) was calculated for the predictors 
obtained by logistic regression. According to the collin-
earity criterion, if VIF > 2, the variable is eliminated. All 
retained variables meet the standard of VIF ≤ 2, indicat-
ing that the model has no significant collinearity. The pre-
dictive indicators modelled for this study were included. 
This method improved the predictive accuracy of the ML 
model and prevented overfitting.

Model development, evaluation, and interpretation
The study was performed according to the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis(TRIPOD) guidelines for 
the development and validation of predictive models 
[21]. Five ML models were used to predict HCC risk in 
patients with CHB, including LR, KNN, SVM, RF, and 
ANN. To optimise the prediction model, we obtained the 
final hyperparameters of each model on the optimal fea-
ture subset based on 10 rounds of 10× cross-validation 
combined with the default hyperparameter grid search 
of the ‘caret’ package. Validation sets were not used in 
the model tuning phase and were used only for model 

evaluation after the completion of model selection and 
training procedures. The training set was pre-processed, 
and the method of Combined Random Undersampling 
and Synthetic Minority Oversampling Technique was 
used to solve the problem of sample imbalance [22]. 
Finally, the model was re-fitted to the validation set using 
the optimal feature subset and final hyperparameters 
(based on 10 rounds of 10× internal cross-validation).

To evaluate the performance of our model, we used 
confusion-matrix metrics including accuracy, precision, 
recall, specificity, F1 score, area under the curve (AUC), 
and Brier score. The Brier score was a measure of the 
degree of deviation between the predicted and the actual 
results. A lower Brier score corresponded with better 
performance of the prediction model [23]. The DeLong 
test was used to determine whether significant differ-
ences existed amongst the AUC values of different mod-
els. Continuous-net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) evalu-
ated the ability of different models to improve classifica-
tion efficiency, NRI > 0, IDI > 0 was positive improvement. 
The calibration curve was used to reflect the degree of 
agreement between the predicted probability and the 
actual result. DCA was used to evaluate the net benefit of 
the model at different thresholds. According to the per-
formance of the above evaluation indices on the training 
set and the validation set, the best prediction model was 
selected.

Finally, to address the opacity of ML algorithms and 
their inability to facilitate clinical interpretation, we 
applied the SHAP method to interpret the output of 
the final model by calculating the contribution of each 
variable to the prediction. This explanatory approach 
provided two explanations: global interpretation of the 
model at the feature level and local interpretation at the 
individual level. Global interpretation described the over-
all functionality of the model. Local interpretation helped 
understand the decision-making mechanism of the 
model by calculating and displaying the contribution of 
each feature to the predicted outcome of a single sample. 
SHAP waterfall plots were used to show the contribution 
of each feature to the model’s prediction of HCC for spe-
cific patients.

Statistical analysis
SPSS 22.0 software (IBM, NY, USA) and R4.3.1 soft-
ware (R Foundation for Statistical Computing, Vienna, 
Austria) were used for statistical analyses. R software 
was primarily used with the ‘calibrate’, ‘rms’, ‘e1071’, 
‘neuralnet’, ‘pROC’, ‘caret’, ‘ggplot2’, and ‘randomForest’ 
packages. Measures conforming to a normal distribu-
tion were expressed as the mean ± standard deviation 
(𝑥±̄s). Considering that HBV-DNA levels were highly 
skewed, they were log-transformed (log10) before 
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analysis. Afterwards, the variables displayed a normal 
distribution and were expressed as the mean ± standard 
deviation (𝑥±̄s). Quantitative information that did not 
conform to a normal distribution even after transfor-
mation was expressed as median and quartiles [M (P25, 
P75)]. Count information was expressed as frequency, 
rate, or constitutive ratio. Normal measurements were 
compared between the two groups using t-tests, whereas 
non-normal measurements were compared using non-
parametric tests. The chi-squared test was used to com-
pare two groups of categorical information. All variables 
in the training set were included in lasso regression for 
preliminary screening of predictors, followed by multi-
factor logistic regression for screening important pre-
dictors. Multicollinearity tests were performed on these 
indicators, and indicators with a VIF < 2 were included in 
the model analysis. The receiver operating characteristic 
(ROC) curve was plotted, and the discriminative abil-
ity of the five models was assessed in combination with 
the AUC. To calculate the 95% CI, the 1000-fold boot-
strap was used. The Brier score (ranging from 0 to 1) was 
used to measure the model performance by calculating 
the difference between the predicted probability and the 
actual outcome. A closer value to 0 meant better cali-
bration effect, thereby assessing the model calibration. 
DeLong test was used to assess the performance of the 
two prediction models by comparing their AUC values. 
The NRI and IDI were used to assess the ability of dif-
ferent models to improve classification efficiency. NRI > 0 
and IDI > 0 indicated positive improvement. Calibration 
and decision curves were used to evaluate the agreement 
of model predictions and actual values with the net clini-
cal benefit of the model at different threshold probabili-
ties, respectively. The RF model explains our use of the 
Python programming language (version 3.7 Python Soft-
ware Foundation, Wilmington, DE). Statistical signifi-
cance was set at p < 0.05 (two tailed).

Results
Basic characteristics of research participants
A total of 516 subjects were included, namely, 273 cases 
in the case group and 243 cases in the control group. 
Amongst them, 391 were males (75.8%) and 125 were 
females (24.2%). The mean age was (50.07 ± 13.95) years. 
The demographic and clinical characteristics of all 
patients are shown in Table  1. Subjects were randomly 
divided into the training set (n = 361) and the internal val-
idation set (n = 155) in a 7:3 ratio, with no statistical sig-
nificance between the two groups (p > 0.05). Additionally, 
there were significant differences existed between the 
case group and the control group in terms of age, gen-
der, AFP, comorbidities (hypertension, diabetes, cerebral 
infarction, liver cirrhosis, arrhythmia, and splenomegaly), 
BMI, NLR, PLR, NMLR, SII, LMR, NPR, PAR, BLR, RPR, 

white blood cell count, NE, Lym, monocytes, eosinophils, 
basophils, red blood cell count, hemoglobin, hematocrit, 
RDW-SD, RDW-CV, platelet, platelet volume, prothrom-
bin time, international normalized ratio, thrombin time, 
fibrinogen, D-Dimer, total protein, albumin, A/G, alka-
line phosphatase, ALT, AST/ALT, GGT, and HBV-DNA 
(p < 0.05), as shown in Table 1.

LASSO-logistic regression for screening feature variables
All the indicators included in the training set were used 
as independent variables to explore the independent risk 
factors associated with HCC. LASSO regression was 
used for variable screening. As illustrated in Fig. 2A, with 
an increase in the regularisation parameter λ, the regres-
sion coefficients of each variable exhibited a tendency 
towards zero, and the number of variables with non-zero 
coefficients also declined. When the minimum value of 
λ (λ = 01005025, Logλ=-4.8878) and the minimum value 
of λ (λ = 0.02261307, Logλ=-3.7892) were represented by 
thick lines, the final selection of the minimum value of λ 
(1 times the standard error) was identified as the optimal 
value (Figure B), and 15 non-zero coefficient predictor 
variables were selected. They included gender, age, liver 
cirrhosis, BLR, Lym count, red blood cell count, throm-
bin time, fibrinogen, D-Dimer, albumin, ALT, AST/ALT, 
GGT, AFP, and LOGHBV-DNA.

To further control the influence of confounding fac-
tors, the selected variables were included in multivari-
ate logistic regression analysis. Results showed that 
age (OR = 1.138, 95% CI 1.083–1.210, p < 0.0001), BLR 
(OR = 3.783, 95% CI 1.901–8.343, p = 0.0004), D-Dimer 
(OR = 2.160, 95% CI 1.438–3.574, p = 0.0007), AST/
ALT(OR = 3.889, 95% CI 1.388–10.907, p = 0.00110), 
GGT (OR = 1.005, 95% CI 1.001–1.010, p = 0.0301), and 
AFP (OR = 113.166, 95% CI 20.639–1027.827, p < 0.0001) 
were independent risk factors for HCC (Table 2). The cal-
culated VIF was all less than 2, indicating that no cross-
collinearity existed between the variables (Table 2).

Development of a model and comparison of performance
Five ML models based on LR, KNN, SVM, RF, and 
ANN were constructed to predict the risk of develop-
ing HCC. The RF model performed well in terms of pre-
diction and calibration capabilities (Figs.  3A and 4A), 
with ROC results showing an AUC of 0.996 (95% CI: 
0.991–0.999) and a Brier score of 0.025(95% CI: 0.013–
0.039) in the training set. The AUC of the ANN model 
was 0.994 (95% CI: 0.989–0.999)), followed by the SVM 
model (AUC = 0.982 (95% CI: 0.970–0.994)), the LR 
model (AUC = 0.966 (95% CI: 0.950–0.982)) and the KNN 
model (AUC = 0.894 (95% CI: 0.862–0.926). The accu-
racy (0.978), precision (0.966), recall rate (0.988), speci-
ficity (0.968), and F1 score (0.977) of the RF model were 
the highest, as shown in Table  3. DeLong test results 
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Characteristic Overall (n = 516) Chronic 
hepatitis(n = 243)

Hepatocellular 
carcinoma(n = 273)

p-value Training 
set(n = 361)

Validation 
set(n = 155)

p-
value

Age, Mean (SD) 50.07 (13.95) 42.29 (11.12) 56.99 (12.49) < 0.001 50.00 (13.80) 50.21 (14.32) 0.875
Gender(%) < 0.001 0.831
  female 125 (24.2) 85 (35.0) 40 (14.7) 86 (23.8) 39 (25.2)
  male 391 (75.8) 158 (65.0) 233 (85.3) 275 (76.2) 116 (74.8)
AFP (%) < 0.001 0.572
  <400 µg/L 369 (71.5) 239 (98.4) 130 (47.6) 255 (70.6) 114 (73.5)
  ≥400 µg/L 147 (28.5) 4 (1.6) 143 (52.4) 106 (29.4) 41 (26.5)
Hypertension(%) 0.003 0.743
  No 458 (88.8) 227 (93.4) 231 (84.6) 322 (89.2) 136 (87.7)
  Yes 58 (11.2) 16 (6.6) 42 (15.4) 39 (10.8) 19 (12.3)
Diabetes (%) 0.041 0.189
  No 464 (89.9) 226 (93.0) 238 (87.2) 320 (88.6) 144 (92.9)
  Yes 52 (10.1) 17 (7.0) 35 (12.8) 41 (11.4) 11 (7.1)
Cerebral infarction(%) 0.025 0.593
  No 505 (97.9) 242 (99.6) 263 (96.3) 352 (97.5) 153 (98.7)
  Yes 11 (2.1) 1 (0.4) 10 (3.7) 9 (2.5) 2 (1.3)
Liver cirrhosis(%) < 0.001 1.000
  No 291 (56.4) 193 (79.4) 98 (35.9) 204 (56.5) 87 (56.1)
  Yes 225 (43.6) 50 (20.6) 175 (64.1) 157 (43.5) 68 (43.9)
Coronary heart 
disease(%)

0.083 1.000

  No 499 (96.7) 239 (98.4) 260 (95.2) 349 (96.7) 150 (96.8)
  Yes 17 (3.3) 4 (1.6) 13 (4.8) 12 (3.3) 5 (3.2)
Arrhythmia(%) 0.021 1.000
  No 482 (93.4) 234 (96.3) 248 (90.8) 337 (93.4) 145 (93.5)
  Yes 34 (6.6) 9 (3.7) 25 (9.2) 24 (6.6) 10 (6.5)
Splenomegaly(%) < 0.001 0.888
  No 423 (82.0) 216 (88.9) 207 (75.8) 297 (82.3) 126 (81.3)
  Yes 93 (18.0) 27 (11.1) 66 (24.2) 64 (17.7) 29 (18.7)
Renal insufficiency(%) 0.381 0.458
  No 496 (96.1) 236 (97.1) 260 (95.2) 349 (96.7) 147 (94.8)
  Yes 20 (3.9) 7 (2.9) 13 (4.8) 12 (3.3) 8 (5.2)
BMI(kg/m2) 0.008 0.785
  <18.5 17 (3.3) 7 (2.9) 10 (3.7) 13 (3.6) 4 (2.6)
  18.5 ~ 23.9 321 (62.2) 140 (57.6) 181 (66.3) 220 (60.9) 101 (65.2)
  24 ~ 27.9 136 (26.4) 66 (27.2) 70 (25.6) 97 (26.9) 39 (25.2)
  ≥28 42 (8.1) 30 (12.3) 12 (4.4) 31 (8.6) 11 (7.1)
Smoking(%) 0.568 0.567
  No 435 (84.3) 202 (83.1) 233 (85.3) 307 (85.0) 128 (82.6)
  Yes 81 (15.7) 41 (16.9) 40 (14.7) 54 (15.0) 27 (17.4)
Alcohol use(%) 0.872 0.254
  No 423 (82.0) 198 (81.5) 225 (82.4) 301 (83.4) 122 (78.7)
  Yes 93 (18.0) 45 (18.5) 48 (17.6) 60 (16.6) 33 (21.3)
NLR, Median [IQR] 2.43 [1.74, 4.11] 2.13 [1.57, 2.62] 3.52 [2.21, 5.58] < 0.001 2.32 [1.74, 3.91] 2.58 [1.80, 4.43] 0.445
PLR, Median [IQR] 120.83 [97.69, 

181.11]
119.07 [93.09, 
150.08]

141.18 [101.35, 
205.81]

< 0.001 124.46 [99.25, 
180.65]

119.07 [91.51, 
182.15]

0.377

NMLR, Median [IQR] 2.82 [2.08, 4.70] 2.45 [1.85, 3.02] 3.94 [2.59, 6.42] < 0.001 2.72 [2.03, 4.43] 2.99 [2.10, 5.20] 0.373
SII, Median [IQR] 453.65 [316.65, 

789.88]
453.65 [315.58, 
526.19]

646.26 [324.32, 
1184.25]

< 0.001 453.65 [320.72, 
783.78]

453.65 [287.44, 
858.89]

0.999

LMR, Median [IQR] 2.67 [1.78, 3.54] 3.14 [2.54, 4.11] 2.02 [1.41, 3.00] < 0.001 2.70 [1.82, 3.58] 2.58 [1.64, 3.31] 0.102
NPR, Median [IQR] 0.02 [0.01, 0.03] 0.02 [0.01, 0.02] 0.02 [0.02, 0.04] < 0.001 0.02 [0.01, 0.03] 0.02 [0.02, 0.03] 0.117
PAR, Median [IQR] 5.08 [3.75, 6.22] 5.24 [4.31, 6.02] 4.63 [3.23, 6.72] 0.018 5.06 [3.81, 6.15] 5.15 [3.63, 6.56] 0.663

Table 1  Comparison of demographic and clinical characteristics of patients with HCC and CHB, as well as comparison between the 
training set and the validation set
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Characteristic Overall (n = 516) Chronic 
hepatitis(n = 243)

Hepatocellular 
carcinoma(n = 273)

p-value Training 
set(n = 361)

Validation 
set(n = 155)

p-
value

ELR, Median [IQR] 0.07 [0.04, 0.10] 0.07 [0.04, 0.09] 0.07 [0.03, 0.12] 0.997 0.07 [0.04, 0.10] 0.07 [0.04, 0.10] 0.562
BLR, Median [IQR] 0.02 [0.01, 0.03] 0.01 [0.01, 0.02] 0.02 [0.01, 0.03] < 0.001 0.01 [0.01, 0.03] 0.02 [0.01, 0.03] 0.167
RPR, Median [IQR] 0.21 [0.17, 0.29] 0.20 [0.18, 0.25] 0.23 [0.17, 0.35] < 0.001 0.21 [0.18, 0.29] 0.20 [0.17, 0.30] 0.995
WBC, Median [IQR] 6.37 [5.01, 7.67] 6.37 [5.10, 6.93] 6.62 [4.93, 8.49] 0.006 6.37 [4.93, 7.43] 6.37 [5.19, 8.02] 0.107
Neutrophil, Median 
[IQR]

3.81 [2.85, 5.21] 3.81 [2.74, 4.19] 4.19 [2.95, 6.02] < 0.001 3.81 [2.86, 5.10] 3.81 [2.84, 5.58] 0.27

Lymphocyte, Median 
[IQR]

1.48 [1.10, 1.88] 1.79 [1.39, 2.01] 1.29 [0.92, 1.67] < 0.001 1.48 [1.10, 1.85] 1.47 [1.10, 1.92] 0.754

Monocyte, Median 
[IQR]

0.57 [0.45, 0.72] 0.56 [0.43, 0.63] 0.62 [0.46, 0.81] < 0.001 0.57 [0.44, 0.69] 0.59 [0.46, 0.78] 0.017

Eosinophil, Median 
[IQR]

0.10 [0.05, 0.17] 0.12 [0.06, 0.17] 0.08 [0.04, 0.17] 0.001 0.10 [0.05, 0.17] 0.10 [0.05, 0.17] 0.699

Basophil, Median [IQR] 0.02 [0.01, 0.04] 0.02 [0.01, 0.03] 0.03 [0.01, 0.04] 0.001 0.02 [0.01, 0.03] 0.02 [0.02, 0.04] 0.096
RBC, Median [IQR] 4.46 [4.05, 4.90] 4.73 [4.40, 5.06] 4.20 [3.70, 4.67] < 0.001 4.50 [4.07, 4.90] 4.43 [4.00, 4.92] 0.484
Hemoglobin, Median 
[IQR]

126.00 [110.00, 
142.00]

130.00 [120.00, 
147.50]

123.00 [106.00, 
138.00]

< 0.001 125.00 [111.00, 
142.00]

126.00 [109.50, 
141.50]

0.744

Hematocrit, Median 
[IQR]

0.41 [0.37, 0.48] 0.44 [0.39, 0.48] 0.39 [0.33, 0.46] < 0.001 0.41 [0.37, 0.48] 0.41 [0.35, 0.46] 0.309

MCV, Median [IQR] 89.10 [85.77, 94.00] 88.40 [86.50, 93.00] 89.70 [85.10, 94.30] 0.205 89.00 [85.80, 
93.90]

89.60 [85.80, 
94.15]

0.764

Mean hemoglobin 
content, Median [IQR]

29.55 [28.28, 31.40] 29.30 [28.80, 30.95] 29.70 [27.40, 31.60] 0.239 29.60 [28.20, 
31.40]

29.50 [28.45, 
31.25]

0.875

Mean hemoglobin 
concentration, Median 
[IQR]

329.56 [323.00, 
337.00]

329.56 [325.00, 
336.00]

329.04 [322.00, 
339.00]

0.680 329.56 [324.00, 
337.00]

329.56 [322.00, 
337.00]

0.430

RDW-SD, Median [IQR] 43.35 [40.20, 47.70] 43.00 [39.80, 44.65] 46.00 [40.90, 50.20] < 0.001 43.35 [40.20, 
47.50]

43.35 [40.55, 
47.90]

0.581

RDW-CV, Median [IQR] 13.85 [12.50, 15.10] 13.40 [12.40, 14.25] 14.30 [12.80, 16.00] < 0.001 13.70 [12.50, 
14.90]

13.94 [12.70, 
15.90]

0.127

Platelet, Median [IQR] 204.00 [157.75, 
245.00]

213.13 [179.50, 
236.00]

192.00 [133.00, 
247.00]

0.006 203.09 [158.00, 
241.00]

213.00 [152.50, 
250.00]

0.844

Mean Platelet Volume, 
Median [IQR]

10.33 [9.80, 10.80] 10.33 [9.80, 10.70] 10.37 [9.80, 10.80] 0.284 10.33 [9.80, 
10.80]

10.33 [9.75, 
10.70]

0.576

Platelet Volume Frac-
tion, Median [IQR]

0.21 [0.18, 0.24] 0.22 [0.20, 0.24] 0.21 [0.15, 0.25] < 0.001 0.21 [0.18, 0.24] 0.21 [0.16, 0.24] 0.547

Platelet Distribution 
Width, Median [IQR]

11.80 [10.60, 12.62] 11.99 [10.85, 12.60] 11.79 [10.40, 12.70] 0.056 11.90 [10.70, 
12.60]

11.79 [10.55, 
12.70]

0.643

P-LCR, Median [IQR] 27.45 [22.87, 31.20] 27.45 [23.55, 31.00] 27.55 [22.50, 31.70] 0.509 27.45 [22.90, 
31.30]

27.45 [22.75, 
30.70]

0.493

PT, Median [IQR] 11.60 [10.70, 12.50] 11.30 [10.50, 11.90] 11.80 [11.00, 13.00] < 0.001 11.50 [10.80, 
12.30]

11.60 [10.70, 
12.85]

0.348

INR, Median [IQR] 1.01 [0.93, 1.10] 0.98 [0.91, 1.04] 1.03 [0.96, 1.15] < 0.001 1.01 [0.93, 1.09] 1.02 [0.93, 1.13] 0.358
APTT, Median [IQR] 27.30 [24.40, 29.80] 27.30 [24.90, 28.65] 27.30 [24.00, 30.40] 0.619 26.80 [24.20, 

29.70]
27.71 [24.90, 
30.00]

0.090

TT, Median [IQR] 20.30 [19.30, 21.10] 20.66 [19.50, 21.25] 20.10 [19.00, 21.00] < 0.001 20.30 [19.30, 
21.10]

20.30 [19.20, 
21.15]

0.762

Fibrinogen, Median 
[IQR]

2.55 [2.09, 3.07] 2.38 [1.94, 2.63] 3.07 [2.35, 3.45] < 0.001 2.53 [2.09, 3.07] 2.64 [2.08, 3.07] 0.669

D-Dimer, Median [IQR] 1.62 [1.43, 3.18] 1.62 [1.62, 1.62] 2.68 [0.79, 4.24] < 0.001 1.62 [1.56, 3.24] 1.62 [1.37, 3.16] 0.742
Total Protein, Median 
[IQR]

68.80 [64.88, 72.25] 70.05 [67.10, 73.05] 66.85 [63.00, 71.40] < 0.001 69.00 [64.70, 
72.60]

68.20 [65.10, 
72.20]

0.796

Albumin, Median [IQR] 40.35 [34.60, 43.90] 40.68 [37.55, 43.75] 37.80 [32.20, 44.40] < 0.001 40.50 [34.60, 
43.90]

40.10 [34.45, 
43.85]

0.476

A/G, Median [IQR] 1.36 [1.00, 1.83] 1.36 [1.00, 1.69] 1.35 [1.00, 3.31] 0.021 1.37 [1.00, 1.82] 1.34 [1.01, 1.83] 0.776
Total Bilirubin, Median 
[IQR]

15.85 [10.20, 36.18] 13.60 [9.40, 40.46] 17.30 [10.60, 32.16] 0.421 15.70 [10.20, 
37.00]

15.90 [10.10, 
32.16]

0.805

Table 1  (continued) 
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showed that when RF model was used as reference, ANN 
(Z = 0.3941, p = 0.6935) had no statistical difference. LR 
model (Z = 3.7834, p = 0.0002), KNN model (Z = 6.4409, 
p < 0.0001) and and SVM model (Z = 2.2513, p = 0.02436) 
had lower predictive power. Furthermore, NRI and IDI 
evaluated the model’s ability to improve the classification 
effect in the training set, and the results showed that the 
RF model had positive improvement ability compared 

with ANN, SVM, and KNN model (NRI > 0, IDI > 0). 
DCA showed that each model had good clinical practica-
bility (Fig. 5A).

In the validation set, the RF model performed best in 
prediction and calibration with an AUC of 0.993 (95% 
CI: 0.986–1) and a Brier score of 0.043(95% CI: 0.028–
0.054) (Figs.  3B and 4B). The DeLong test showed that 
the AUC of the RF model was higher than that of the LR 

Fig. 2  LASSO regression model for clinical feature selection. (A) Plot of the model’s coefficient distribution for logarithmic (lambda) sequences at different 
penalty levels. (B) For cross verification, the first column represents the minimum error, while the second column represents the cross-verification error 
of 1 standard deviation

 

Characteristic Overall (n = 516) Chronic 
hepatitis(n = 243)

Hepatocellular 
carcinoma(n = 273)

p-value Training 
set(n = 361)

Validation 
set(n = 155)

p-
value

Direct Bilirubin, Median 
[IQR]

8.10 [5.00, 24.55] 6.90 [4.50, 31.14] 9.10 [5.80, 24.43] 0.121 7.90 [5.10, 24.90] 8.30 [4.95, 24.43] 0.761

Indirect Bilirubin, Me-
dian [IQR]

6.30 [3.90, 9.20] 6.40 [3.80, 9.20] 6.00 [4.00, 8.30] 0.289 6.40 [4.00, 9.20] 6.00 [3.80, 9.05] 0.429

ALT, Median [IQR] 52.00 [26.00, 
161.00]

105.00 [31.50, 
205.20]

41.00 [24.00, 69.59] < 0.001 54.00 [27.00, 
166.00]

49.00 [24.00, 
135.00]

0.275

ALP, Median [IQR] 105.00 [78.75, 
165.25]

101.00 [70.50, 
111.50]

136.00 [88.00, 192.00] < 0.001 104.00 [79.00, 
157.00]

108.00 [79.00, 
170.50]

0.566

AST, Median [IQR] 64.50 [32.00, 
134.12]

72.00 [27.00, 
134.12]

61.00 [37.00, 129.78] 0.883 66.00 [33.00, 
134.12]

61.00 [31.00, 
134.12]

0.712

AST/ALT, Median [IQR] 1.10 [0.80, 2.00] 0.90 [0.60, 1.00] 1.60 [1.10, 2.40] < 0.001 1.10 [0.80, 1.90] 1.20 [0.80, 2.10] 0.389
GGT, Median [IQR] 87.79 [42.00, 

197.25]
81.00 [28.00, 
102.00]

158.00 [61.00, 253.00] < 0.001 87.79 [43.00, 
209.41]

87.79 [36.50, 
166.00]

0.360

Total Bile Acids, Median 
[IQR]

20.10 [6.50, 40.88] 23.00 [6.25, 40.88] 19.40 [6.80, 33.10] 0.101 19.20 [6.50, 
40.88]

23.10 [6.90, 
40.88]

0.387

HBV-DNA, Median [IQR] 4.45 (1.76) 4.17 (1.56) 4.69 (1.88) 0.001 4.17 [3.12, 6.36] 4.17 [2.60, 6.36] 0.734
AFP, Alpha-fetoprotein; BMI, Body mass index; NLR, Neutrophil-lymphocyte ratio; PLR, Platelet-lymphocyte ratio; NMLR, Neutrophil-monocyte-lymphocyte ratio; 
SII, Systemic immune-inflammation index; LMR, Lymphocyte–monocyte ratio; NPR, Neutrophil–lymphocyte ratio; PAR, Platelet–lymphocyte ratio; ELR, Eosinophil–
lymphocyte ratio; BLR, Basophil–lymphocyte ratio; RPR, Red-cell distribution width–platelet count ratio; WBC, White blood cell; RBC, Red blood cell; MCV, Mean 
corpuscular volume; RDW-SD, Red cell distribution width - standard deviation; RDW-CV, Red cell distribution width - coefficient of variation; P-LCR, Platelet large cell 
ratio; PT, Prothrombin time; INR, International Normalized Ratio; APTT, Activated Partial Thromboplastin Time; TT, Thrombin time; ALT, Alanine aminotransferase; 
ALP, Alkaline phosphatase; AST, Aspartate aminotransferase; AST/ALT, Aspartate aminotransferase/alanine aminotransferase Ratio; GGT, γ - Glutamyl transferase

Table 1  (continued) 
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Table 2  Multivariate Logistic regression analysis of independent risk factors
Characteristic Estimate SE Wald χ2 p-value OR(95%CI) VIF
Age 0.130 0.028 4.666 <0.0001 1.138(1.083–1.210) 1.649
BLR 1.331 0.374 3.561 0.0004 3.783(1.901–8.343) 1.423
D-Dimer 0.770 0.227 3.399 0.0007 2.160(1.438–3.574) 1.608
AST/ALT 1.358 0.534 2.542 0.0110 3.889(1.388–10.907) 1.421
GGT 0.005 0.002 2.169 0.0301 1.005(1.001–1.010) 1.320
AFP(≥400 µg/L) 4.729 0.975 4.848 <0.0001 113.166(20.639-1027.837) 1.355
(Intercept) -1.995 7.005 -0.285 0.776 0.136(—) —

Fig. 4  Calibration curves of five machine learning models predicting HCC risk in patients with CHB in training set (A) and validation set (B)

 

Fig. 3  Receiver operating characteristic analysis of the training set (A) and validation set (B)
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(Z = 3.7046, p = 0.000212), KNN (Z = 4.7276, p < 0.0001), 
SVM (Z = 3.5405, p < 0.0001) and ANN (Z = 1.1319, 
p = 0.2576) models. However, there was no statistical 
significance between the RF and ANN models. The RF 
model had the highest accuracy (0.942), recall (1.000), 
specificity (0.892), and F1 score (0.942). NRI and IDI 
analysis showed that the LR model performed better 
than the KNN, RF, ANN and SVM models in terms of 
reclassification and overall discriminative ability (NRI > 0, 
IDI > 0). DCA showed that when the threshold of the 
model was set within a certain range, the decision curve 
lay above the None line and the All line, where the model 
had clinical practicability(Fig. 5B). In conclusion, the RF 
model performed well in the training and test sets and 
was thus the preferred model for predicting HCC risk in 
patients with CHB.

Interpretation of RF model
To make the predictive model more intuitive for clini-
cians to understand and accept, we adopted the SHAP 
approach. The results of the RF model were clearly inter-
preted by quantifying the contribution of each vari-
able to the predicted outcome. As shown in the SHAP 
summary bar chart (Fig.  6A), the average SHAP value 
was used to evaluate the contribution of features to the 
model, ranked from highest to lowest as AST/ALT, AFP, 
D-Dimer, age, GGT, and BLR. The SHAP summary 
scatter plot (Fig.  6B) visually showed the direction and 

intensity of each feature’s influence on the model predic-
tion. A higher feature value corresponded with a higher 
likelihood of HCC. The red and blue dots represented 
higher and lower eigenvalues, respectively. SHAP depen-
dency plots are used to visualise the impact of individual 
features on model predictions. Specifically, the x-axis is 
the feature value and the y-axis is the SHAP value. These 
graphs can visually show whether a particular feature has 
a positive or negative effect on the model prediction. Fig-
ure  6D shows that six features have significant positive 
effects on the model prediction results.

Additionally, local interpretation helped understand 
the decision-making mechanism of the model by cal-
culating and displaying the contribution of each feature 
to the predicted outcome of a single sample. The SHAP 
waterfall plot (Fig.  6C) shows the contribution of each 
feature to the model’s prediction of HCC occurrence 
for a given patient. The specific value of each feature 
in the figure and its corresponding SHAP value repre-
sented the positive and negative influence of the feature 
on the prediction result. In this patient, AFP, D-Dimer, 
and AST/ALT had significant positive contributions to 
the prediction results of + 0.17, + 0.17, and + 0.1 respec-
tively. Conversely, BLR, age, and GGT had significant 
negative contributions to the prediction results of -0.12, 
-0.05, and − 0.02, respectively. The SHAP waterfall plot 
visually demonstrated the formation of patient-specific 

Table 3  Performance of five machine learning methods in predicting HCC risk in CHB patients in training and validation sets
Model Accuracy(95% 

CI)
Preci-
sion(95% CI)

Recall(95% CI) Specificity(95% CI) F1 Score(95% 
CI)

AUC(95% CI) Brier 
score(95% CI)

Train-
ing set
LR 0.903(0.868–

0.932)
0.878(0.823–
0.926)

0.924(0.880–0.961) 0.884(0.821–0.922) 0.900(0.870–
0.938)

0.966(0.950–0.982) 0.070(0.052–
0.089)

KNN 0.808(0.764–
0.848)

0.798(0.747–
0.864)

0.807(0.761–0.875) 0.811(0.725–0.851) 0.800(0.754–
0.869)

0.894(0.862–0.926) 0.132(0.113–
0.153)

SVM 0.925(0.893–
0.950)

0.923(0.886–
0.963)

0.918(0.880–0.959) 0.932(0.873–0.959) 0.921(0.883–
0.961)

0.982(0.970–0.994) 0.054(0.037–
0.072)

RF 0.978(0.957–
0.990)

0.966(0.933–
0.988)

0.988(0.962–0.999) 0.968(0.927–0.987) 0.977(0.947–
0.993)

0.996(0.991–0.999) 0.025(0.013–
0.039)

ANN 0.964(0.939–
0.981)

0.965(0.959–
0.968)

0.959(0.926–0.985) 0.968(0.925–0.987) 0.962(0.929–
0.987)

0.994(0.989–0.999) 0.027(0.017–
0.038)

Valida-
tion 
set
LR 0.832(0.764–

0.887)
0.811(0.733–
0.905)

0.833(0.756–0.921) 0.831(0.703–0.893) 0.822(0.744–
0.913)

0.915(0.873–0.958) 0.115(0.087–
0.148)

KNN 0.761(0.686–
0.826)

0.778(0.733–
0.904)

0.681(0.649–0.834) 0.831(0.656–0.872) 0.726(0.688–
0.868)

0.846(0.784–0.908) 0.155(0.126–
0.185)

SVM 0.839(0.771–
0.892)

0.841(0.775–
0.932)

0.806(0.742–0.908) 0.867(0.733–0.918) 0.823(0.758–
0.920)

0.913(0.884–0.964) 0.121(0.089–
0.153)

RF 0.942(0.893–
0.973)

0.889(0.804–
0.949)

1.000(0.951-1.000) 0.892(0.800-0.948) 0.942(0.872–
0.974)

0.993(0.986-1.000) 0.043(0.028–
0.054)

ANN 0.897(0.885–
0.969)

0.931(0.865–
0.980)

0.931(0.865–0.980) 0.891(0.845–0.978) 0.931(0.865–
0.980)

0.987(0.975–0.999) 0.046(0.029–
0.069)
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predictions by accumulating SHAP values, providing 
insight into the model’s decision-making mechanisms.

Discussion
HCC caused by HBV infection is a serious public health 
problem worldwide. Although antiviral therapy can effec-
tively inhibit HBV replication and reduce the risk of HCC 
development, the risk of HCC after treatment remains 
a major concern. HCC is one of the most common 
malignant tumours, posing a serious threat to human 
life, health and safety. The treatment and prognosis of 

patients are severely compromised due to occult presen-
tation and low early diagnosis rate. Additionally, HCC is 
highly refractory to therapeutic intervention, with 70% of 
patients experiencing tumour recurrence within 5 years 
even after surgical resection or ablation [24]. Once the 
tumour has progressed to an advanced stage, currently 
available drug therapies offer only marginal survival ben-
efits and are not cost effective [25]. Therefore, preventing 
the development and progression of HCC in high-risk 
patients rather than treating advanced disease with lim-
ited health benefits is prudent to consider.

Fig. 5  DCA curves of five machine learning models predicting HCC risk in patients with CHB in training set (A) and validation set (B)
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Studies have been reported to predict the risk of HCC 
in CHB [26]. However, most of these studies use a single 
method (traditional logistic regression) for model con-
struction, which may not be able to deal with complex 
problems, thereby affecting the predictive performance. 

ML is described as a “marriage between Mathematics 
and Computer Science” and has proven to be a promising 
method for selecting biomarkers and building prognos-
tic models [27]. Some studies have also reported some 
differences between traditional and ML-based methods 

Fig. 6  Global and local model explanation by the SHapley Additive exPlanation (SHAP) method. (A) SHAP summary bar plot. (B) SHAP summary dot plot. 
(C) SHAP waterfall plot. (D) SHAP correlation plot for all predictors
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[28]. Data from clinical electronic health-record (EHR) 
systems are relatively objective, accurate, and easy to 
obtain. For clinicians and researchers, combining clinical 
EHR data with sophisticated ML algorithms can facili-
tate the development of clinical prediction models. Based 
on clinical and experimental data from the clinical EHR 
system, a set of predictors (age, BLR, D-Dimer, AST/
ALT, GGT, and AFP) were identified by LASSO–logistic 
regression to predict HCC risk in patients with CHB. An 
interpretable ML model was constructed and validated 
using ML algorithms to assess HCC risk in CHB patients, 
which can be a valuable tool for the identification and 
early intervention of HCC risk in CHB patients.

Amongst the five ML models constructed in this study, 
the RF model has the highest AUC, with good accuracy 
and net benefit. The model also performs well in inter-
nal validation. This study shows that the RF-based pre-
diction model has better discriminative ability than other 
ML algorithms. Compared to ANN, RF models are more 
robust when dealing with limited sample sizes and noisy 
data. Although ANN has significant advantages in mod-
elling non-linear relationships, with its multi-layer struc-
ture capable of capturing complex feature interactions 
and relationships between high-dimensional data, its 
performance is hampered by sample size limitations and 
the complexity of data characteristics. Under small sam-
ple conditions, ANN is prone to overfitting and sensitive 
to the adjustment of hyper-parameters such as the num-
ber of layers and the number of nodes. In contrast, the 
RF algorithm is an ensemble learning method that solves 

classification and regression problems by constructing 
multiple decision trees. It subsequently improves predic-
tion accuracy, generalisation ability, and anti-overfitting 
ability by averaging (regression problem) or majority 
voting (classification problem) [29]. RF offers the advan-
tages of high classification accuracy, identification of 
the significance of variables, multiple data analyses, and 
modelling of complex interactions between explana-
tory variables [30].The results show that the RF model 
outperforms the ANN in terms of sensitivity, specificity 
and AUC, indicating that the RF model is more robust in 
processing limited sample size and high noise data. This 
result suggests that when designing predictive models, 
researchers should select appropriate algorithms accord-
ing to data characteristics and research objectives, and 
explore model optimisation to fully exploit the potential 
of the data. At the same time, future research can con-
sider integrating multiple models with a larger sample 
size or broader research background to improve the gen-
eralisation ability and anti-overfitting performance of the 
model. These measures will also help to improve the reli-
ability and applicability of the model in clinical practice. 
Several studies have shown that RF algorithms are very 
valuable for predictive models in the medical field [31, 
32]. Wang et al. [33] developed an RF model for macro-
somia detection. The sensitivity, specificity, and AUC 
were 91.7%, 91.7%, and 0.953, respectively, which were 
significantly higher than logistic regression. Wang et al. 
[34] also developed five ML models to predict the risk of 
structural recurrence in papillary thyroid cancer patients. 

Fig. 6  (continued)
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Their RF performance was significantly higher than that 
of LR, SVM, extreme gradient boosting, and NN. In the 
current study, we developed and interpreted the final 
model with six features using the RF algorithm. These 
features can be easily obtained and evaluated during a 
patient’s hospital stay, making the model a promising tool 
for effectively predicting the risk of developing HCC in 
CHB patients.

Currently, guidelines and consensus to guide the selec-
tion of features in predictive models are lacking. The 
number of features that should be included in the model 
remains unclear. More predictive features in the model 
usually mean better performance, but too many features 
may limit the clinical application of the model, and the 
addition of confounders also reduces the accuracy of 
prediction. Therefore, LASSO regression combined with 
multi-factor logistic method was used for feature selec-
tion in this study. Six indicators (age, BLR, D-Dimer, 
AST/ALT, GGT, and AFP) were finally identified as pre-
dictive indicators of the model, which are easy to obtain 
in daily clinical practice, making the model conducive to 
clinical decision making. AFP is an HCC-specific tumour 
marker and the most widely used biomarker for HCC 
worldwide [35, 36]. Determination of AFP levels has been 
used to monitor the onset and progression of HCC, as 
well as to assess the effectiveness of treatment and pre-
dict prognosis. High AFP levels are strong predictors of 
HCC risk. AFP can be used indirectly as an indicator of 
the stage of fibrosis in chronic hepatitis C virus infec-
tion [ 37]. AFP levels are associated with cirrhosis stage 
and HCC risk and also positively correlated with tumour 
size [38]. High AFP levels are associated with aggressive 
tumour biology and survival. AFP promotes carcinogen-
esis by promoting proliferation, immune escape, angio-
genesis, invasion, metastasis, and recurrence of liver 
cancer cells. Consistent with previous studies, this study 
showed that high serum AFP levels (≥ 400  µg/L) pre-
dicted an increased risk of HCC. However, the increased 
AFP concentration in HCC patients and the mechanism 
by which AFP is associated with HCC pathogenesis are 
not fully understood. The underlying mechanism may be 
that AFP expression is associated with the expression of 
several proteins involved in angiogenesis and iron metab-
olism. Iron overload promotes the development of liver 
cancer through the production of oxygen-reactive sub-
stances and carcinogenic oxidative damage.

AST and ALT are liver enzymes that can indicate hepa-
tocellular damage. The AST/ALT ratio is a non-invasive 
biomarker of liver function damage and can be used to 
assess the causes of liver diseases such as hepatic fibrosis, 
cirrhosis, and non-alcoholic fatty liver disease [39]. High 
levels of AST/ALT can be used as an indicator of HBV 
infection. AST/ALT may also serve as a biomarker for 
inflammation. In patients with cirrhosis, elevated AST/

ALT is significantly associated with progression of liver 
dysfunction and stage of cirrhosis and provides prognos-
tic information similar to existing scoring systems such 
as the end-stage liver disease model or the Child–Pugh 
score [40]. Previous studies have shown that the AST/
ALT ratio is a predictor of liver fibrosis and cirrhosis in 
patients with chronic HCV infection. A higher AST/
ALT ratio is associated with an increased risk of death 
and relapse. High AST/ALT levels may reflect severe 
liver necrosis, leading to HCC invasion and recur-
rence. Increasing evidence indicates that the ratio usu-
ally exceeds 2.0 in patients with alcoholic liver disease 
and is less than 1.0 in patients with chronic hepatitis and 
chronic cholestatic syndrome [41]. In this study, AST/
ALT levels in patients with CHB were significantly lower 
than those in patients with HCC (AST/ALT: 0.9 vs. 1.6, 
p < 0.001), and elevated AST/ALT levels also predicted 
an increased risk of HCC (OR: 3.889 (1.388–10.907), 
p < 0.0001). The underlying pathophysiological mecha-
nism is unclear, but it may be related to the disruption 
of cancer-related changes in cell metabolism that is a 
hallmark of the disease in HCC, which may lead to the 
observed changes in AST and ALT levels [42]. Patients 
with high AST/ALT ratios may represent severe liver dis-
ease, so close monitoring is essential to control potential 
risks and optimise treatment behaviour. Careful manage-
ment is essential when treating CHB patients with high 
AST/ALT ratios.

Serum GGT is an important enzyme in glutathione 
metabolism and cellular stress response and is attract-
ing increased research attention [43]. GGT is a marker 
of liver damage. Alcohol consumption, acute and chronic 
liver disease, and oxidative stress can all contribute to 
elevated levels. Previous studies [44] have shown that 
elevated GGT levels are associated with an increased risk 
of cancer of the liver, colon, oesophagus, lung, and stom-
ach. Hu et al. [45] indicated that high serum GGT lev-
els, as measured by the highest quartile of serum GGT, 
increased the risk of primary liver cancer. Our results also 
suggest that elevated GGT levels predict an increased risk 
of HCC. Potential mechanisms may include cell damage, 
oxidative stress, inflammatory response, and bile acid 
metabolism [46]. Therefore, GGT may play an important 
role in assessing the risk of liver cancer in patients, and 
monitoring GGT levels may help in the early detection 
of liver cancer and its associated risks, especially in high-
risk populations.

Additionally, systemic inflammation has been shown to 
be an important feature of malignant tumours, and the 
body’s inflammation and immune response play a major 
role in the progression from chronic hepatitis to HCC. 
BLR, as a comprehensive indicator for predicting inflam-
mation and immune response in blood routine, has the 
advantage of being simple and easy to obtain. Elevated 
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BLR is reportedly associated with improved overall sur-
vival in patients with non-small cell lung cancer [47]. 
Additionally, BLR is considered an independent prognos-
tic factor for recurrence-free survival in distal cervical 
cancer [48]. Liao et al. [49] pointed out that PLR, NLR, 
MLR, BLR, and ELR all increase in patients with stable 
chronic obstructive pulmonary disease compared with 
healthy subjects. PLR, NLR, MLR, and BLR were fur-
ther increased in the exacerbation phase. However, this 
study also examined the relationship between NLR, PLR, 
NMLR, SII, and other indicators and the risk of HCC, 
but no statistically significant difference was observed. 
This may be primarily due to the bias caused by the inclu-
sion of samples, or the fact that CHB patients received 
antiviral treatment, resulting in changes in the relevant 
indicators.

D-Dimer is an indicator of coagulation and fibrinolysis 
that can indirectly determine thrombotic activity and is a 
reliable indicator of the degree of activation of the coagu-
lation system [50]. Hypercoagulability plays an important 
role in tumour angiogenesis, invasion, and metastasis 
in patients with malignant tumours [51]. High plasma 
D-Dimer levels are strongly associated with poor progno-
sis in patients with colorectal cancer [52], but the screen-
ing value of D-Dimer has been neglected. The results of 
our study indicated that D-Dimer level was a valuable 
screening indicator for HBV-associated HCC. Thus, 
monitoring the D-Dimer should be considered in clinical 
practice to facilitate the early identification of high-risk 
patients and support timely intervention and treatment.

Finally, the results of this study showed that age was 
one of the most important risk factors for HCC. HCC 
development is known to be a gradual process that can 
take years or even decades. This may be related to the 
longer course of hepatitis B, host autoimmune resistance, 
and clinical antiviral therapy. The asymptomatic incu-
bation period of HBV infection is long, and accurately 
determining the duration of HBV infection in real life is 
difficult. Age may also reflect the duration of HBV infec-
tion in China. Previous studies have shown that old age 
is a risk factor for liver cancer in patients with chronic 
liver disease [53]. Liu et al. [54] proposed similar results, 
suggesting that age is an independent predictor for the 
diagnosis of AFP-negative HCC. HCC reportedly occurs 
rarely before the age of 40 and peaks at around 60 years, 
consistent with the mean age of 56.99 years in the HCC 
group in this study.

Therefore, increased age, BLR, D-Dimer, AST/ALT, 
GGT, and AFP were important predictors of the risk 
of HCC in CHB patients. In clinical practice, the clini-
cal monitoring of changes in the above indicators in 
HBV-infected patients can help to predict and diagnose 
the risk of HCC, as well as assess the liver function and 

disease progression of patients. If the above indicators 
increase in clinical practice, we should be vigilant.

Strengths and limitations
ML techniques are often described as ‘black boxes’, 
making their predictive processes almost impossible to 
explain. This lack of transparency can make clinicians 
reluctant to use these technologies because they are 
reluctant to make medical decisions based on opaque 
information. However, a major strength of this study was 
that we use SHAP methods to meaningfully expose the 
‘black box’ of ML models. The SHAP methods clarify 
the function of the model by providing global and local 
explanations that detail how personalised input data can 
be used to make specific predictions about individual 
patients. Additionally, another benefit of this study was 
the comparison of the predictive performance of differ-
ent ML models for HCC risk in CHB. The performance 
evaluation of the model in the training and internal-
validation sets and the model comparison show that the 
RF model had a better predictive value. Finally, the pre-
dictive factors included in the model in this study were 
all routine items during the hospitalisation of patients. 
These factors were accessible and affordable and can 
make full use of the available examination items for the 
risk assessment of CHB patients, thereby providing fea-
sibility for the promotion and application of the model in 
clinical practice.

However, this study had several notable limitations. 
Firstly, it was a single-centre study with a small total sam-
ple size and inevitable selection bias. Secondly, this study 
focused only on a single centre, so only internal valida-
tion was performed without the support of external vali-
dation, proving that the stability of the predictive model 
performance was necessary. Therefore, future efforts are 
needed to conduct multi-centre prospective studies and 
provide more opportunities for multi-centre collabora-
tion and better data-mining capabilities. Thirdly, geo-
graphical limitations may also affect the generalisability 
of the results. Because studies are based on patient data 
from specific regions, they may not reflect conditions in 
other regions or populations, which limits the general 
applicability of the results. Fourthly, CHB patients receiv-
ing treatment, but antiviral treatment was not included 
as part of the study. This limitation may affect the results 
of the study, as antiviral therapy may have an impact on 
serological markers (such as HBV-related indicators, 
liver function, etc.) and liver morphology. Considering 
the universality of the model, only routine laboratory test 
results easily obtained in clinical practice were included. 
We did not include some novel molecular markers asso-
ciated with liver cancer risk, such as dehydroepiandros-
terone sulphate [55] and miRNA [56]. Finally, many 
factors (such as imaging indicators, BCLC stage, physical 
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status, etc.) may be associated with HCC risk, but they 
were not fully included in this study, which may limit the 
comprehensiveness and predictive performance of the 
model. Therefore, more variables need to be added in 
the future to further optimise the prediction model and 
improve its clinical application value.

Conclusion
We identified age, BLR, D-Dimer, AST/ALT, GGT, and 
AFP as predictors of HCC risk in CHB patients and con-
structed and validated an interpretable ML model to 
assess the risk of HCC in CHB patients. It may provide a 
valuable tool for the identification and early intervention 
of HCC in patients with CHB.
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