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Abstract 

Background  Cholestasis, characterized by impaired bile flow, impacts cognitive function through systemic mecha-
nisms, including inflammation and metabolic dysregulation. Despite its significance, targeted predictive models 
for cognitive impairment in cholestasis remain underexplored. This study addresses this gap by developing a machine 
learning-based predictive model tailored to this population.

Methods  Clinical and biochemical data from Qingyang People’s Hospital (2021–2023) were used to train and validate 
models for predicting cognitive impairment (MoCA ≤ 17). Recursive feature elimination identified critical predictors, 
while LightGBM and other machine learning models were evaluated. SHAP analysis enhanced model interpretability, 
and clinical utility was assessed through decision curve analysis (DCA).

Results  LightGBM outperformed other models with an AUC of 0.7955 on the testing dataset. Age, plasma D-dimer, 
and albumin were key predictors. SHAP analysis revealed non-linear interactions among features, demonstrating 
the model’s clinical alignment. DCA confirmed its utility in improving patient stratification.

Conclusion  The developed LightGBM-based model effectively predicts cognitive impairment in cholestasis patients, 
providing actionable insights for early intervention. Integrating this tool into clinical workflows can enhance precision 
medicine and improve outcomes in this high-risk population.
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Introduction
Cholestasis is a clinical syndrome characterized by 
impaired bile flow, which disrupts the enterohepatic 
circulation and leads to the accumulation of bile com-
ponents in the bloodstream [1]. Although primarily 

associated with liver dysfunction, cholestasis exerts 
systemic effects that extend beyond hepatic damage, 
impacting cardiovascular, metabolic, and neurocognitive 
systems [2]. Emerging research highlights the deleterious 
impact of cholestasis on cognitive function, particularly 
in domains such as memory, attention, and executive 
functioning [3]. The underlying mechanisms appear mul-
tifaceted, involving chronic systemic inflammation [4], 
oxidative stress [5], gut-liver-brain axis dysregulation [6], 
and nutritional deficiencies such as hypoalbuminemia 
and fat-soluble vitamin depletion [7]. Despite this grow-
ing body of evidence, cognitive dysfunction in choles-
tasis patients often remains underdiagnosed and poorly 
understood in clinical practice, necessitating robust 
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predictive models to facilitate early identification and 
intervention [8].

The MoCA has been widely recognized as a gold stand-
ard for assessing cognitive function due to its sensitivity 
and multidomain coverage, making it particularly effec-
tive in detecting early and moderate-to-severe cognitive 
impairments [9]. Unlike traditional cognitive screen-
ing tools such as the Mini-Mental State Examination 
(MMSE), MoCA incorporates evaluations of executive 
function, visuospatial skills, and language, which are 
often the first domains to decline in systemic diseases 
like cholestasis [9, 10]. While MoCA has demonstrated 
utility in patients with neurodegenerative diseases and 
cerebrovascular disorders, its application in hepato-
biliary conditions, particularly in cholestasis, remains 
underexplored [11]. Previous studies have suggested that 
cognitive impairment in cholestasis patients shares simi-
larities with cognitive dysfunction seen in other systemic 
diseases [12]. Although MoCA has not been widely vali-
dated in cholestatic patients specifically, its sensitivity in 
detecting early cognitive deficits in liver-related condi-
tions, such as hepatic encephalopathy, provides a foun-
dation for its potential use in cholestasis [13]. Studies 
focusing on cholestasis have primarily been descriptive, 
detailing its association with hepatic encephalopathy or 
neuroinflammatory states but lacking targeted tools for 
stratifying cognitive risk. The diagnosis of cholestasis in 
this study was based on clinical, laboratory, and imag-
ing criteria, as outlined in the guidelines established by 
the American Association for the Study of Liver Diseases 
(AASLD) and the European Association for the Study of 
the Liver (EASL) [14, 15]. Furthermore, existing predic-
tive tools for cognitive impairment often fail to account 
for the unique biochemical and metabolic profiles of 
cholestasis patients, which include elevated bilirubin, 
altered coagulation parameters, and systemic inflamma-
tion markers such as D-dimer [16, 17]. This gap under-
scores the pressing need for disease-specific, data-driven 
approaches to predict cognitive outcomes.

The current study addresses this unmet need by lever-
aging machine learning to develop and validate a predic-
tive model for moderate-to-severe cognitive impairment 
in cholestasis patients, defined by a MoCA score ≤ 17. 
Using comprehensive clinical data from patients at Qing-
yang People’s Hospital, this study incorporates a wide 
range of demographic, laboratory, and clinical variables 
to identify those at highest risk. By applying advanced 
feature selection techniques and integrating multiple 
machine learning algorithms, the model is designed to 
capture complex relationships between variables that tra-
ditional statistical methods may overlook. This study not 
only seeks to provide clinicians with an actionable tool 
for early risk stratification but also aims to deepen the 

understanding of the interplay between cholestasis and 
cognitive dysfunction. Such efforts are vital for advancing 
precision medicine, where timely, individualized inter-
ventions can significantly improve patient outcomes in 
this high-risk population.

Method
Data collection and preprocessing
Data collection
This study utilized a comprehensive dataset extracted 
from the electronic medical record (EMR) system of 
Qingyang People’s Hospital. The dataset included records 
of patients hospitalized with a diagnosis of cholestasis 
between January 2021 and December 2023. Data collec-
tion was carefully planned to ensure completeness, rel-
evance, and consistency, focusing on variables that could 
potentially contribute to predicting the risk of moder-
ate to severe cognitive impairment, defined as a MoCA 
score ≤ 17.

The collected data encompassed multiple 
domains:Demographics: Information such as age, gen-
der, height, weight, and education level was gathered to 
describe the patient population and serve as potential 
predictors.

Clinical histories  Patients’ histories of comorbidities, 
including hypertension, diabetes, coronary heart disease, 
cerebral infarction, chronic cholecystitis, acute exacerba-
tion of chronic cholecystitis, and liver dysfunction, were 
included. Additionally, histories of cardiovascular and 
cerebrovascular diseases, endocrine disorders, and liver-
related conditions such as hepatitis B and fatty liver were 
captured.

Laboratory data  Detailed biochemical and hemato-
logical test results were extracted, including liver enzyme 
levels (ALT, AST, ALP, and GGT), bilirubin profiles (total 
bilirubin, direct bilirubin, and indirect bilirubin), total 
bile acid, protein metabolism markers (total protein, 
globulin, and albumin), lipid profiles (total cholesterol, 
triglycerides, HDL-C, and LDL-C), fasting blood glucose, 
uric acid, and coagulation parameters (PT, APTT, TT, 
fibrinogen, D-dimer, and fibrin degradation products).

Cognitive assessment  Cognitive function was assessed 
using the MoCA. Scores were recorded at admission or 
during follow-up as part of routine clinical evaluation, 
providing the primary outcome variable for the study.

Inclusion criteria were defined as follows  Patients 
aged ≥ 18 years with a confirmed diagnosis of choles-
tasis based on clinical, laboratory, or imaging findings.
Complete data for demographic, clinical, and laboratory 
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variables, along with at least one valid MoCA assessment.
Hospitalization within the defined study period (January 
2021–December 2023).

Exclusion criteria included  Missing or incomplete data 
for key variables, particularly MoCA scores, laboratory 
tests, or demographic information. Diagnosed psychiat-
ric or neurodegenerative disorders unrelated to cholesta-
sis, which could independently affect cognitive function.

A standardized data extraction protocol was employed 
to ensure consistency across the collection process. Data 
were manually verified for accuracy and completeness by 
trained medical staff before being anonymized for analy-
sis. These comprehensive and systematically collected 
data formed the foundation for robust feature selection 
and predictive modeling.

Data cleaning
The collected dataset underwent rigorous cleaning to 
ensure analytical quality. Missing data, accounting for 
less than 5% of the records, were removed without impu-
tation to maintain the integrity of the dataset. Outli-
ers were identified using the interquartile range (IQR) 
method and excluded to minimize their influence on sta-
tistical analyses. Continuous variables were standardized 
to z-scores, and categorical variables were appropriately 
encoded for compatibility with predictive algorithms. 
These cleaning steps ensured that the dataset was suit-
able for machine learning analysis.

Data splitting
The dataset was divided temporally to align with real-
world clinical scenarios. Data from 2021 and 2022 were 
used as the training set while 2023 data constituted the 
testing set. The training set was used for feature selection, 
model training, and hyperparameter tuning, while the 
testing set served as an independent evaluation cohort 
for assessing model performance and generalizability.

Ethical considerations
This study adhered to the principles outlined in 
the Declaration of Helsinki. Ethical approval was 
obtained from the institutional review board of Qing-
yang People’s Hospital before the initiation of the 
study(QYRMYY[2021]−002). Patient confidentiality was 
protected by anonymizing all data before analysis. Only 
de-identified records were used, ensuring no personal 
identifiers were included in the analysis or reporting. 
These measures ensured that the research adhered to 
ethical and legal standards.

Baseline characteristics analysis
Baseline characteristics were analyzed to provide an 
overview of the clinical and demographic profiles of the 
study population and to compare differences between 
patients with and without moderate to severe cogni-
tive impairment (MoCA ≤ 17). Continuous variables 
were summarized as mean ± standard deviation (SD) 
for normally distributed data or as median with inter-
quartile range (IQR) for non-normally distributed data. 
Categorical variables were expressed as frequencies and 
percentages. Statistical comparisons were performed to 
assess differences between groups. For continuous vari-
ables, either independent t-tests or Mann–Whitney U 
tests were used, depending on data distribution. Cat-
egorical variables were analyzed using chi-squared tests, 
with Fisher’s exact tests applied for variables with low 
expected counts. A significance threshold of p < 0.05 was 
used for all analyses. The results provided insight into the 
differences in baseline characteristics, identifying vari-
ables that might be associated with cognitive impairment 
for further analysis.

Correlation analysis
The association between candidate predictors and mod-
erate to severe cognitive impairment (MoCA ≤ 17) was 
evaluated using a two-step logistic regression approach. 
First, univariate logistic regression analysis was per-
formed to assess the relationship between each predictor 
and the outcome variable. Each predictor was modeled 
independently, and the results were expressed as odds 
ratios (ORs) with 95% confidence intervals (CIs). This 
step aimed to explore the potential relationship of each 
variable with cognitive impairment but did not apply 
a strict significance threshold for advancing to the next 
step.

Second, all candidate predictors were included in a 
backward stepwise selection process to identify the most 
informative combination of variables. This procedure, 
based on minimizing the Akaike Information Criterion 
(AIC), was performed using a multivariate logistic regres-
sion model. The backward selection algorithm system-
atically removed variables contributing the least to the 
model’s explanatory power, iteratively refining the model 
to achieve the lowest AIC. The final model retained only 
those variables that minimized AIC while balancing com-
plexity and interpretability.

The results of the final multivariate model were pre-
sented as adjusted ORs with 95% CIs. This approach 
allowed the identification of independently significant 
predictors of cognitive impairment while controlling for 
potential confounding effects among variables. By rely-
ing on AIC optimization rather than p-value thresholds 
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for univariate analysis, this method ensured a data-driven 
selection of predictors that contributed meaningfully to 
the outcome in combination, maximizing model effi-
ciency and robustness.

Recursive Feature Elimination (RFE)
RFE was applied in combination with a random forest 
algorithm to identify the most relevant features for the 
predictive model. The process began with the full set of 
candidate features, iteratively eliminating those with the 
lowest importance based on the random forest’s feature 
importance scores. After each iteration, the model was 
retrained and evaluated to determine the optimal feature 
subset. The selection criterion was based on the model’s 
performance metrics, with the process stopping when 
further elimination resulted in no significant improve-
ment or a decline in predictive accuracy. The final fea-
ture selection was guided by both the feature importance 
scores provided by the random forest model and the 
model’s ability to achieve the best balance between pre-
dictive accuracy and interpretability [18]. This method 
allowed for the identification of a feature set that opti-
mized model performance while maintaining a manage-
able number of predictors for downstream analysis.

Model development and optimization
Model construction
To develop robust predictive models for moderate to 
severe cognitive impairment, 11 machine learning algo-
rithms were implemented, including decision tree, ran-
dom forest, XGBoost, LightGBM, LASSO regression, 
Elastic Net regression, ridge regression, k-nearest neigh-
bors (KNN), support vector machine (SVM), multilayer 
perceptron (MLP), and logistic regression. These mod-
els were selected to encompass a range of algorithmic 
approaches, including linear, non-linear, and tree-based 
methods, ensuring comprehensive exploration of pre-
dictive performance. Each model was trained on the 
preprocessed training dataset, with hyperparameters ini-
tialized to standard values before further tuning.

Model validation
The performance of each model was evaluated using ten-
fold cross-validation on the training dataset. This vali-
dation strategy divided the dataset into 10 equal parts, 
using 9 parts for training and 1 part for validation in each 
iteration. The AUC was used as the primary evaluation 
metric, quantifying the model’s ability to discriminate 
between patients with and without moderate to severe 
cognitive impairment. Cross-validation ensured a reliable 
estimate of each model’s generalizability and mitigated 
overfitting.

To optimize performance, hyperparameter tuning was 
conducted using Bayesian optimization. This process 
systematically explored the hyperparameter space to 
identify configurations that maximized AUC. For tree-
based models, parameters such as learning rate, maxi-
mum depth, and number of leaves were optimized. For 
SVM, the kernel type and regularization parameter were 
adjusted. This systematic optimization ensured that each 
model was tuned to its maximum potential.

Model integration
To further enhance predictive performance, a stacking 
ensemble model was constructed. The outputs of the 11 
individual models (predicted probabilities) were used 
as input features for a meta-model, which was trained 
to produce the final prediction. Logistic regression was 
selected as the meta-model due to its simplicity and 
interpretability. This integration strategy aimed to har-
ness the complementary strengths of the individual mod-
els, producing a combined prediction with potentially 
superior accuracy and discrimination.

Performance evaluation on training and testing sets
The predictive performance of all 12 models, including 
the stacking ensemble, was evaluated on both the train-
ing set and the independent testing set. The primary eval-
uation metric was the AUC, which measures the ability 
of a model to discriminate between classes. Comparisons 
focused on identifying the model with the highest AUC 
on the testing set, reflecting its generalizability and appli-
cability to unseen data.

Evaluation of clinical utility
Decision curve analysis
Decision curve analysis (DCA) was conducted to evalu-
ate the clinical utility of the best-performing model iden-
tified in the previous steps. DCA assesses the net benefit 
of using the model across a range of risk thresholds, com-
paring its performance to default strategies of treating all 
patients or treating none. By integrating the trade-offs 
between true-positive and false-positive predictions at 
each threshold, DCA provides a quantitative measure of 
the model’s value in guiding clinical decision-making.

Clinical impact curve
The clinical impact curve (CIC) was constructed to 
further assess the practical implications of the best-
performing model. The CIC visualizes the number of 
patients classified as high-risk and the corresponding 
number of true positives across different risk thresh-
olds. This analysis complements the DCA by providing a 
clearer understanding of the model’s ability to correctly 
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identify patients at risk while minimizing unnecessary 
interventions.

Model interpretability analysis
To enhance the interpretability of the best-performing 
model, SHapley Additive exPlanations (SHAP) were 
employed. SHAP values provide a unified framework to 
explain the contribution of each feature to the model’s 
predictions, offering insights into both global and indi-
vidual-level model behavior.

Global SHAP feature importance was visualized to 
identify the overall contribution of each feature to the 
model’s predictive performance. This plot ranks features 
by their average absolute SHAP values, highlighting the 
most influential predictors across the dataset. For indi-
vidual-level explanations, SHAP contribution plots were 
generated to illustrate how specific features influenced 
the prediction for a single patient. These plots detail the 
magnitude and direction of each feature’s impact, pro-
viding a transparent and actionable interpretation of the 
model’s decision-making process. SHAP interaction plots 
were created to explore interactions between features, 
demonstrating how two variables jointly influence the 
model’s predictions.

Result
Baseline characteristics analysis
Table  1 summarizes the baseline characteristics of the 
study population, comparing individuals with moderate 
to severe cognitive impairment (MoCA ≤ 17, referred to 
as the impaired cognition group, \( N = 57 \)) and those 
without significant impairment (MoCA > 17, referred to 
as the preserved cognition group, \( N = 296 \)). Individu-
als in the impaired cognition group had a significantly 
older median age of 72 years compared to 58 years in the 
preserved cognition group (\( p < 0.001 \)).

The impaired cognition group also exhibited notable 
differences in nutritional and metabolic markers. Mean 
height, total protein, albumin, and calcium concentra-
tions were significantly lower in this group (p = 0.029, 
p = 0.015), (p = 0.023 \), and (p = 0.030), respectively). 
Additionally, median uric acid levels were reduced 
(p = 0.006)), while plasma D-dimer levels were markedly 
elevated (p < 0.001), indicating potential alterations in 
both metabolic and coagulation pathways.

Differences in chronic health conditions were also 
observed. The prevalence of chronic cholecystitis was 
higher among individuals in the impaired cognition 
group (64.9% vs. 48.3%, (p = 0.022)), suggesting a possible 
link between chronic inflammation and cognitive decline. 
Educational attainment was another key differentiator, 
with a significantly higher proportion of individuals in 

the impaired cognition group being illiterate (42.1% vs. 
11.5%, (p < 0.001 \)).

These findings indicate that moderate to severe cogni-
tive impairment is associated with advanced age, meta-
bolic and coagulation imbalances, chronic inflammatory 
conditions, and lower levels of education, offering critical 
insights into potential risk factors contributing to cogni-
tive decline.

Correlation analysis
Multivariate analysis of Table  2 showed that MoCA 
scores were associated with several important factors. 
The presence of chronic cholecystitis was associated 
with a higher likelihood of outcome events (adjusted 
OR, 2.87; 95% CI, 1.39–5.96; p = 0.005). Conversely, 
liver dysfunction (adjusted OR, 0.32; 95% CI, 0.11–0.95; 
p = 0.040) and a history of cardiovascular or cerebro-
vascular events (adjusted OR, 0.30; 95% CI, 0.12–0.71; 
p = 0.007) were linked to a decreased likelihood. Females 
were more likely to experience the outcome compared to 
males (adjusted OR, 2.35; 95% CI, 1.05–5.26; p = 0.038). 
Educational attainment showed a trend, with primary 
school (adjusted OR, 0.26; 95% CI, 0.10–0.66; p = 0.005) 
and middle school education (adjusted OR, 0.34; 95% CI, 
0.12–1.00; p = 0.050) being associated with lower odds of 
the outcome compared to illiteracy. Each unit increase in 
age was associated with a rise in likelihood (adjusted OR, 
1.08; 95% CI, 1.04–1.12; p < 0.001), whereas increases in 
total bile acid levels reduced the likelihood (adjusted OR, 
0.99; 95% CI, 0.98–1.00; p = 0.019). Similar effects were 
observed for total cholesterol levels, where higher levels 
were associated with increased risk (adjusted OR, 1.37; 
95% CI, 1.02–1.85; p = 0.038). Absolute neutrophil count 
(adjusted OR, 1.72; 95% CI, 1.03–2.89; p = 0.039) and 
neutrophil percentage (adjusted OR, 0.93; 95% CI, 0.87–
0.99; p = 0.024) also showed significant associations, as 
did lymphocyte percentage (adjusted OR, 0.91; 95% CI, 
0.84–0.99; p = 0.027) and white blood cell count (adjusted 
OR, 0.60; 95% CI, 0.37–0.98; p = 0.040). Platelet count 
was marginally associated with increased risk (adjusted 
OR, 1.01; 95% CI, 1.00–1.01; p = 0.031). While the asso-
ciation between triglyceride levels and the outcome was 
not statistically significant (adjusted OR, 1.22; 95% CI, 
0.95–1.55; p = 0.114), the INR showed a pronounced but 
non-significant trend towards significance (adjusted OR, 
8.57; 95% CI, 0.81–90.38; p = 0.074).

Feature selection results
Feature selection was conducted using recursive fea-
ture elimination (RFE) combined with a random forest 
algorithm to identify the most relevant predictors for 
moderate to severe cognitive impairment. The analy-
sis ranked features based on their contribution to the 
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Table 1  Patient demographics and baseline characteristics

Characteristic MoCA p-value

No, N = 2961 Yes,N = 571

Age 58 (48, 68) 72 (58, 77)  < 0.0012

Height 170 (161, 175) 165 (160, 173) 0.0292

Weight 62 (55, 70) 60 (55, 65) 0.1192

Fasting_Blood_Glucose_mmolL 5.45 (4.62, 6.85) 5.93 (4.85, 6.48) 0.8452

ALT_U_L 29 (17, 88) 35 (15, 82) 0.7262

AST_U_L 28 (20, 63) 31 (21, 108) 0.3522

ALP_U_L 99 (77, 170) 103 (81, 152) 0.4492

GGT_U_L 38 (18, 219) 42 (18, 247) 0.4242

Total_Bilirubin_TBIL_umolL 18 (11, 36) 22 (12, 47) 0.1812

Direct_Bilirubin_umolL 5 (3, 15) 8 (4, 23) 0.0842

Indirect_Bilirubin_umolL 11 (8, 20) 13 (8, 23) 0.3902

Total_Bile_Acid_umolL 5 (3, 13) 6 (3, 13) 0.3552

Total_Protein_TP_gL 66 (61, 70) 63 (57, 70) 0.0152

Globulin_GLO_gL 26.8 (24.0, 29.5) 25.2 (22.6, 29.3) 0.1002

Albumin_ALB_gL 38.9 (35.4, 42.0) 36.4 (33.3, 40.6) 0.0232

Urea_mmolL 5.28 (4.27, 6.57) 6.08 (4.73, 7.54) 0.0132

Calcium_mmolL 2.24 (2.14, 2.32) 2.19 (2.09, 2.30) 0.0302

Uric_Acid_umolL 255 (191, 314) 221 (153, 279) 0.0062

Total_Cholesterol_TCHO_mmolL 3.66 (2.99, 4.25) 3.56 (3.07, 4.33) 0.8762

Triglycerides_TG_mmolL 1.20 (0.83, 1.68) 0.99 (0.65, 1.46) 0.0372

HDL_Cholesterol_HDL_C_mmolL 1.00 (0.85, 1.19) 1.07 (0.87, 1.24) 0.3392

LDL_Cholesterol_LDL_C_mmolL 2.15 (1.62, 2.79) 2.10 (1.69, 2.83) 0.9262

Neutrophils_Absolute_NEUT_10.9L 4.5 (3.2, 7.2) 4.7 (3.5, 7.0) 0.6402

Neutrophils_Percentage_NEUT_Percent 71 (61, 85) 73 (63, 85) 0.5312

Lymphocytes_Absolute_10.9L 1.13 (0.77, 1.65) 1.13 (0.73, 1.43) 0.4142

Lymphocytes_Percentage_Percent 21 (16, 29) 20 (12, 26) 0.1652

White_Blood_Cell_WBC 6.4 (5.3, 9.1) 6.3 (5.1, 8.2) 0.8162

Hemoglobin_HGB_gL 134 ± 19 130 ± 20 0.1403

Platelets_PLT_10.9L 175 (123, 220) 165 (134, 236) 0.6712

APTT_Coagulation_Time 28.0 (25.8, 32.0) 28.0 (26.0, 31.0) 0.8492

Prothrombin_Time_PT 12.70 (11.90, 13.60) 12.90 (12.30, 14.00) 0.0622

Thrombin_Time_TT 15.76 (14.90, 16.66) 16.10 (15.10, 16.80) 0.2192

INR_International_Normalized_Ratio 1.06 (1.01, 1.13) 1.10 (1.04, 1.18) 0.0092

Fibrinogen_FIB_gL 2.68 (2.24, 3.56) 3.05 (2.39, 3.71) 0.1152

Plasma_D_Dimer_ugml 0.24 (0.11, 0.48) 0.43 (0.25, 0.99)  < 0.0012

Fibrin_Degradation_Products_ugml 1.9 (1.2, 3.6) 3.0 (1.6, 6.4) 0.0062

Common_Bile_Duct_Stone 0.0764

  No 131 (44.3%) 18 (31.6%)

  Yes 165 (55.7%) 39 (68.4%)

Hypertension 0.9394

  No 201 (67.9%) 39 (68.4%)

  Yes 95 (32.1%) 18 (31.6%)

Diabetes 0.1994

  No 264 (89.2%) 54 (94.7%)

  Yes 32 (10.8%) 3 (5.3%)

Coronary_Heart_Disease 0.4384

  No 251 (84.8%) 46 (80.7%)

  Yes 45 (15.2%) 11 (19.3%)
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model’s predictive performance, as measured by impor-
tance scores. In particular, the inclusion of variables 
like age and plasma D-dimer was driven by their strong 
association with cognitive decline observed in previ-
ous clinical research, which indicated their potential 
relevance in predicting cognitive impairment in choles-
tasis patients. Figure 1A shows the ranking of variable 

importance, with fasting blood glucose, total protein, 
plasma D-dimer, albumin, and calcium identified as 
the most influential predictors. Additional important 
features included HDL cholesterol and other mark-
ers of metabolic and coagulation status. These vari-
ables demonstrated strong contributions to the model’s 
ability to discriminate between individuals with and 

1 Median (IQR); Mean ± SD; n (%)
2 Wilcoxon rank sum test
3 Welch Two Sample t-test
4 Pearson’s Chi-squared test
5 Fisher’s exact test

Table 1  (continued)

Characteristic MoCA p-value

No, N = 2961 Yes,N = 571

Tumor 0.7595

  No 279 (94.3%) 53 (93.0%)

  Yes 17 (5.7%) 4 (7.0%)

Cerebral_Infarction 0.5424

  No 228 (77.0%) 46 (80.7%)

  Yes 68 (23.0%) 11 (19.3%)

Chronic_Cholecystitis 0.0224

  No 153 (51.7%) 20 (35.1%)

  Yes 143 (48.3%) 37 (64.9%)

Acute_Exacerbation_Chronic_Cholecystitis 0.1664

  No 228 (77.0%) 39 (68.4%)

  Yes 68 (23.0%) 18 (31.6%)

Liver_Dysfunction 0.7194

  No 238 (80.4%) 47 (82.5%)

  Yes 58 (19.6%) 10 (17.5%)

Hepatitis_B 0.3955

  No 288 (97.3%) 54 (94.7%)

  Yes 8 (2.7%) 3 (5.3%)

Fatty_Liver 0.2084

  No 245 (82.8%) 51 (89.5%)

  Yes 51 (17.2%) 6 (10.5%)

Cardiovascular_Cerebrovascular_History 0.0474

  No 194 (65.5%) 45 (78.9%)

  Yes 102 (34.5%) 12 (21.1%)

Endocrine_Disease_History 0.4855

  No 281 (94.9%) 56 (98.2%)

  Yes 15 (5.1%) 1 (1.8%)

Gender 0.1434

  male 201 (67.9%) 33 (57.9%)

  female 95 (32.1%) 24 (42.1%)

Education_Level < 0.0014

  illiteracy 34 (11.5%) 24 (42.1%)

  Primary school 117 (39.5%) 18 (31.6%)

  Middle school 116 (39.2%) 12 (21.1%)

  University and above 29 (9.8%) 3 (5.3%)
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Table 2  Univariate and multivariate analysis of influencing factors (Logistic regression)

Characteristic Univariable Multivariable

OR1 95% CI1 p-value2 OR1 95% CI1 p-value2

Common_Bile_Duct_Stone
  No — —

  Yes 1.72 0.94, 3.15 0.078

Hypertension
  No — —

  Yes 0.98 0.53, 1.80 0.939

Diabetes
  No — —

  Yes 0.46 0.14, 1.55 0.210

Coronary_Heart_Disease
  No — —

  Yes 1.33 0.64, 2.77 0.440

Tumor
  No — — — —

  Yes 1.24 0.40, 3.83 0.710 0.27 0.06, 1.10 0.067

Cerebral_Infarction
  No — —

  Yes 0.80 0.39, 1.63 0.543

Chronic_Cholecystitis
  No — — — —

  Yes 1.98 1.10, 3.57 0.023* 2.87 1.39, 5.96 0.005**

Acute_Exacerbation_Chronic_Cholecystitis
  No — —

  Yes 1.55 0.83, 2.88 0.168

Liver_Dysfunction
  No — — — —

  Yes 0.87 0.42, 1.83 0.719 0.32 0.11, 0.95 0.040*

Hepatitis_B
  No — —

  Yes 2.00 0.51, 7.78 0.317

Fatty_Liver
  No — —

  Yes 0.57 0.23, 1.39 0.213

Cardiovascular_Cerebrovascular_History
  No — — — —

  Yes 0.51 0.26, 1.00 0.051 0.30 0.12, 0.71 0.007**

Endocrine_Disease_History
  No — —

  Yes 0.33 0.04, 2.58 0.294

Gender
  male — — — —

  female 1.54 0.86, 2.75 0.145 2.35 1.05, 5.26 0.038*

Education_Level
  illiteracy — — — —

  Primary school 0.22 0.11, 0.45  < 0.001*** 0.26 0.10, 0.66 0.005**

  Middle school 0.15 0.07, 0.32  < 0.001*** 0.34 0.12, 1.00 0.050*

  University and above 0.15 0.04, 0.54 0.004** 0.41 0.08, 2.12 0.285

Age 1.07 1.04, 1.09  < 0.001*** 1.08 1.04, 1.12 < 0.001***
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without cognitive impairment. As shown in Fig. 1B, the 
RFE process determined that the optimal model per-
formance was achieved using 13 features. This is indi-
cated by the peak accuracy marked by the red dashed 
line, where further addition of features did not result in 
improved performance. These 13 features provided the 
best trade-off between predictive accuracy and model 

complexity, serving as the final subset of predictors 
used in subsequent modeling and validation steps.

Model performance results
The performance of the models was evaluated using ROC 
curves and AUC values for both the training and test-
ing datasets, as shown in Fig.  2A and B.In the training 

1 OR Odds Ratio, CI Confidence Interval
2 *p < 0.05; **p < 0.01; ***p < 0.001

Null deviance = 312; Null df = 352; Log-likelihood = −110; AIC = 259; BIC = 336; Deviance = 219; Residual df = 333; No. Obs. = 353

Table 2  (continued)

Characteristic Univariable Multivariable

OR1 95% CI1 p-value2 OR1 95% CI1 p-value2

Height 0.97 0.95, 1.00 0.073

Weight 0.98 0.95, 1.01 0.112

Fasting_Blood_Glucose_mmolL 0.95 0.84, 1.08 0.423

ALT_U_L 1.00 1.00, 1.00 0.302

AST_U_L 1.00 1.00, 1.00 0.922

ALP_U_L 1.00 1.00, 1.00 0.589

GGT_U_L 1.00 1.00, 1.00 0.785

Total_Bilirubin_TBIL_umolL 1.00 1.00, 1.01 0.082

Direct_Bilirubin_umolL 1.00 1.00, 1.01 0.070

Indirect_Bilirubin_umolL 1.01 1.00, 1.02 0.111

Total_Bile_Acid_umolL 1.00 0.99, 1.00 0.675 0.99 0.98, 1.00 0.019*

Total_Protein_TP_gL 0.97 0.94, 1.00 0.070

Globulin_GLO_gL 0.98 0.92, 1.04 0.452

Albumin_ALB_gL 0.97 0.94, 1.01 0.107

Urea_mmolL 1.07 0.97, 1.19 0.156

Calcium_mmolL 0.14 0.02, 0.93 0.042*

Uric_Acid_umolL 1.00 0.99, 1.00 0.003** 1.00 0.99, 1.00 0.066

Total_Cholesterol_TCHO_mmolL 1.18 0.96, 1.45 0.109 1.37 1.02, 1.85 0.038*

Triglycerides_TG_mmolL 1.09 0.91, 1.31 0.352 1.22 0.95, 1.55 0.114

HDL_Cholesterol_HDL_C_mmolL 1.17 0.73, 1.88 0.515

LDL_Cholesterol_LDL_C_mmolL 1.14 0.86, 1.50 0.363

Neutrophils_Absolute_NEUT_10.9L 1.03 0.95, 1.11 0.487 1.72 1.03, 2.89 0.039*

Neutrophils_Percentage_NEUT_Percent 1.01 0.99, 1.03 0.537 0.93 0.87, 0.99 0.024*

Lymphocytes_Absolute_10.9L 0.77 0.50, 1.18 0.230

Lymphocytes_Percentage_Percent 0.98 0.96, 1.01 0.165 0.91 0.84, 0.99 0.027*

White_Blood_Cell_WBC 1.00 0.92, 1.08 0.994 0.60 0.37, 0.98 0.040*

Hemoglobin_HGB_gL 0.99 0.97, 1.00 0.124

Platelets_PLT_10.9L 1.00 1.00, 1.00 0.591 1.01 1.00, 1.01 0.031*

APTT_Coagulation_Time 1.00 0.95, 1.05 0.967

Prothrombin_Time_PT 1.11 0.97, 1.28 0.132

Thrombin_Time_TT 1.04 0.88, 1.22 0.671

INR_International_Normalized_Ratio 6.17 1.00, 37.99 0.050* 8.57 0.81, 90.38 0.074

Fibrinogen_FIB_gL 1.09 0.92, 1.28 0.330

Plasma_D_Dimer_ugml 1.12 0.94, 1.33 0.193

Fibrin_Degradation_Products_ugml 1.03 1.00, 1.07 0.061



Page 10 of 17Fang et al. BMC Gastroenterology          (2025) 25:185 

Fig. 1  Baseline characteristics and feature selection results. A Clinical and laboratory characteristics of the study population, stratified by cognitive 
impairment status (MoCA ≤ 17). Significant group differences are marked. B Feature importance ranking using recursive feature elimination (RFE) 
with a random forest algorithm. (C) Final selection of 13 features contributing most significantly to the predictive model



Page 11 of 17Fang et al. BMC Gastroenterology          (2025) 25:185 	

dataset (Fig. 2A), the random forest model achieved the 
highest AUC (0.8931), followed by the stacking ensemble 
(0.8779) and LightGBM (0.8441). However, in the testing 
dataset (Fig.  2B), LightGBM demonstrated the highest 
AUC (0.7955), outperforming all other models, including 
the stacking ensemble and random forest, which experi-
enced more pronounced drops in performance. Consid-
ering both training and testing results, LightGBM strikes 
the best balance between high discriminatory ability and 
robust generalization, making it the most suitable model 
for predicting moderate to severe cognitive impairment 
while minimizing the risk of overfitting.

Figure 2C and D show the predicted probability distri-
butions of the LightGBM model for moderate to severe 
cognitive impairment (MoCA ≤ 17) in the training and 
testing datasets, respectively. In the training dataset 
(Fig. 2C), the positive class (teal) and negative class (red) 
are well-separated, indicating that the LightGBM model 
effectively differentiates between the two groups based 
on learned patterns. In the testing dataset (Fig. 2D), the 

separation remains evident but with a slightly larger 
overlap, reflecting the real-world variability in unseen 
data. These results demonstrate the LightGBM model’s 
strong discriminatory ability and reliable generalization 
across both datasets.

Clinical utility evaluation
Figure  3A and C present the decision curve analysis 
(DCA) and clinical impact curve (CIC) for the LightGBM 
model in the training dataset, while Fig. 3B and D display 
the corresponding results for the testing dataset. These 
analyses assess the clinical utility and practical effective-
ness of the model in identifying individuals with moder-
ate to severe cognitive impairment (MoCA ≤ 17).

In the training dataset (Fig. 3A), the DCA shows that 
the LightGBM model provides a higher net benefit 
across a wide range of threshold probabilities compared 
to treating all or none. This suggests that the model 
effectively balances sensitivity and specificity, mak-
ing it valuable for guiding clinical decisions. The CIC 

Fig. 2  Performance of machine learning models. A, B ROC curves for training (A) and testing (B) datasets comparing all models. LightGBM shows 
the best balance of performance and generalizability. C, D Predicted probability distributions for training (C) and testing (D) datasets, showing 
the separation between cognitive impairment and non-impairment groups
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in Fig. 3C indicates that the model accurately identifies 
high-risk individuals, as shown by the alignment of true 
positives (blue line) with the total number of predicted 
high-risk cases (red line) at various thresholds.

In the testing dataset (Fig. 3B), the DCA confirms the 
model’s generalizability, maintaining a higher net ben-
efit across clinically relevant thresholds. Similarly, the 
CIC in Fig. 3D demonstrates consistent performance in 
predicting high-risk individuals, with a clear distinction 
between true positives and overestimated cases.

SHAP‑based model interpretability
The SHAP analysis provides a detailed explanation of 
how the LightGBM model predicts moderate to severe 
cognitive impairment (MoCA ≤ 17) by assessing the con-
tribution of features at both global and individual levels.

Figures 4A and B present the overall importance of fea-
tures in the LightGBM model. Age and plasma D-dimer 
were identified as the most influential predictors, with 
higher age and elevated plasma D-dimer levels strongly 
increasing the risk of cognitive impairment. Albumin 
and platelet counts were also significant, where low albu-
min levels and high platelet counts were associated with 

Fig. 3  Clinical utility of the LightGBM model. A, B Decision curve analysis (DCA) for training (A) and testing (B) datasets, showing net benefit 
across risk thresholds. C, D Clinical impact curve (CIC) for training (C) and testing (D) datasets, illustrating the alignment of predicted high-risk cases 
with true positives

(See figure on next page.)
Fig. 4  Model Interpretability Using SHAP Analysis (A) SHAP summary plot showing the overall importance of features in the LightGBM model, 
with age, plasma D-dimer, and albumin identified as the most influential predictors. The color gradient represents the feature values, where higher 
or lower values impact predictions in specific directions. B Mean absolute SHAP values ranking feature importance, highlighting the significant 
contribution of age, plasma D-dimer, and metabolic markers. C SHAP dependence plots illustrating the relationships between feature values 
and their contributions to the model, revealing nonlinear effects for age, plasma D-dimer, and albumin. D SHAP interaction plot showing 
the interplay between age and plasma D-dimer, demonstrating how their combined effects influence predictions. E SHAP waterfall plot providing 
an individual prediction explanation, detailing how specific features cumulatively contribute to the predicted probability of cognitive impairment
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Fig. 4  (See legend on previous page.)
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elevated risk. Figure 4B ranks these features by their aver-
age SHAP contributions, highlighting their central roles 
in the model’s predictions.

Figure  4C explores the relationship between feature 
values and their SHAP contributions. The likelihood of 
cognitive impairment increases sharply with age beyond 
65 years and with plasma D-dimer levels exceeding 0.5 
µg/mL. Nonlinear effects are evident for features such 
as uric acid and thrombin time, where both high and low 
values contribute to predictions in different ways. These 
plots illustrate the nuanced and context-specific influ-
ence of features, providing deeper insights into the clini-
cal risk factors associated with cognitive impairment.

Figure  4D examines interactions between features. 
Notably, the combined effect of age and plasma D-dimer 
levels significantly increases the predicted risk of cog-
nitive impairment, demonstrating how these features 
interact synergistically. Other interactions, such as those 
between albumin and total protein, further highlight 
the importance of evaluating predictors in combination 
rather than in isolation.

Figure  4E provides a detailed decomposition of the 
prediction for a single individual. Starting from the base-
line prediction (E[f(x)] = 0.159), each feature contributes 
incrementally to the final probability (f(x) = 0.204). For 
this individual, elevated plasma D-dimer levels (+ 0.027) 
and low albumin levels (+ 0.0233) were the main con-
tributors to the higher risk, while age (−0.0302) slightly 
reduced the probability. This personalized explanation 
clarifies how the model arrives at its predictions, enhanc-
ing its interpretability and trustworthiness in clinical 
contexts.

Discussion
This study identified several key predictors associated 
with the risk of moderate to severe cognitive impair-
ment (MoCA ≤ 17) in patients with cholestasis, includ-
ing age, plasma D-dimer, albumin, and platelet count 
[19]. Age emerged as a critical factor, with older patients 
demonstrating a significantly higher risk, while elevated 
plasma D-dimer and low albumin levels indicated poten-
tial contributions from coagulation abnormalities and 
nutritional deficiencies, respectively. These findings 
underscore the multifactorial nature of cognitive impair-
ment in cholestasis, highlighting the interplay between 
metabolic, inflammatory, and hemostatic pathways. 
Compared to other diseases, such as neurodegenerative 
disorders or cerebrovascular diseases, cholestasis pre-
sents unique cognitive impairments associated with dis-
tinct metabolic and coagulation abnormalities, such as 
elevated bilirubin and D-dimer levels [20–22]. The Light-
GBM model demonstrated superior performance among 
the 12 machine learning algorithms tested, achieving the 

highest AUC on the independent testing dataset. While 
it did not show the highest AUC on the training dataset, 
its consistent performance on unseen data underscores 
its robust generalizability and resistance to overfitting. 
Compared to other models, such as random forest and 
stacking ensembles, LightGBM demonstrated the least 
overfitting, as evidenced by its lower AUC difference 
between the training dataset (AUC 0.8441) and the test-
ing dataset (AUC 0.7955). The AUC gap between train-
ing and testing datasets is understandable and acceptable 
in machine learning models, as some variability between 
datasets is typical. Moreover, LightGBM’s performance 
on the testing dataset still remains strong, suggesting its 
robust generalization and clinical applicability.

In addition to LightGBM, other classification mod-
els such as random forest and stacking ensembles were 
evaluated. Random forest, for instance, showed competi-
tive performance with an AUC of 0.7905 on the testing 
dataset, while the stacking ensemble achieved an AUC 
of 0.7872.This balance between discrimination and gen-
eralization positions LightGBM as the optimal model for 
predicting cognitive impairment in this population [23]. 
SHAP analysis provided critical insights into the clini-
cal interpretability of the model. By identifying feature 
importance and visualizing their contributions to indi-
vidual predictions, SHAP reinforced the model’s align-
ment with clinical reasoning. For instance, the significant 
impact of plasma D-dimer and age on individual predic-
tions aligns with established clinical evidence, enabling 
clinicians to understand not only the "what" but also the 
"why" behind the model’s outputs, enhancing trust and 
applicability in practice.

To further assess the clinical utility of the model, deci-
sion curve analysis (DCA) was performed. DCA dem-
onstrated that the LightGBM model provides a higher 
net benefit across a wide range of threshold probabili-
ties compared to treating all or none. Figures 3A and B 
present the DCA results for both the training and test-
ing datasets, clearly showing that the model provides 
actionable insights for clinical decision-making, where 
using the model as a risk assessment tool would improve 
patient outcomes. Moreover, the clinical impact curve 
(CIC), shown in Fig.  3C and D, further supports the 
model’s clinical utility by demonstrating the alignment of 
predicted high-risk cases with actual true positives, offer-
ing additional evidence of the model’s value in real-world 
clinical scenarios.

The developed LightGBM-based predictive model 
holds significant promise for assisting clinicians in early 
identification of high-risk patients with cholestasis [24]. 
By stratifying risk based on key predictors such as plasma 
D-dimer and albumin, the model enables targeted inter-
ventions to mitigate or delay the progression of cognitive 



Page 15 of 17Fang et al. BMC Gastroenterology          (2025) 25:185 	

impairment [25]. This proactive approach could signifi-
cantly improve patient outcomes, particularly in a vul-
nerable population where cognitive decline often remains 
underrecognized [26]. Integrating the model into elec-
tronic medical record (EMR) systems offers the potential 
for real-time risk assessment during routine clinical care. 
With automated data processing, clinicians can receive 
immediate risk estimates, supporting timely decision-
making and resource allocation [27]. This integration 
would enhance the efficiency and precision of patient 
management, aligning predictive analytics with day-
to-day clinical workflows. The use of machine learning 
in this context highlights its transformative potential to 
complement traditional clinical methods. Unlike conven-
tional models, machine learning algorithms can uncover 
complex, nonlinear relationships between predictors, 
providing a more nuanced understanding of disease risk 
[28]. This capability to identify subtle interactions and 
dependencies positions machine learning as a valuable 
tool in advancing personalized medicine, particularly 
in diseases with multifactorial etiologies like cholestasis 
[29].

This study advances the current understanding of 
cognitive impairment in cholestasis patients by intro-
ducing a machine learning-based predictive model, a 
novel approach not previously explored in this popula-
tion. Prior studies, such as those focusing on hepatic 
encephalopathy, have identified cognitive impairment as 
a secondary outcome of cholestasis, often attributing it to 
systemic inflammation and neurotoxic metabolite accu-
mulation [30], these works primarily relied on descriptive 
or correlational analyses without integrating predictive 
methodologies [25]. In contrast, this study highlights the 
importance of specific metabolic and coagulation factors, 
such as D-dimer and albumin levels, as key predictors of 
cognitive decline, distinguishing it from studies on neu-
rodegenerative diseases or cerebrovascular conditions, 
which typically emphasize structural or neurochemi-
cal markers [31, 32]. The use of machine learning in this 
study, particularly LightGBM, demonstrates the ability to 
handle complex, high-dimensional datasets and identify 
non-linear interactions among predictors, such as age, 
plasma D-dimer, and albumin [26]. Unlike traditional sta-
tistical approaches, such as logistic regression, which are 
limited in capturing intricate feature relationships, the 
model used in this study achieved superior performance 
and interpretability through SHAP analysis [33, 34]. This 
interpretability allows for direct clinical insights, such 
as the identification of specific metabolic markers, con-
sistent with earlier literature that emphasizes the role of 
coagulation and inflammation markers in cognitive out-
comes [35]. By buundational findings, this study bridges 
the gap between observational research and actionable 

predictive tools, offering a transformative approach to 
precision medicine for cholestasis-related cognitive 
impairment [19, 36]. One limitation of this study is the 
single-center dataset from Qingyang People’s Hospital, 
which may limit the generalizability of the findings to 
other populations. The cohort was largely composed of 
patients from a specific geographical region, potentially 
introducing regional biases that may not fully reflect the 
diversity of the broader cholestasis patient population.

Additionally, the lack of external validation with data 
from other centers or diverse populations limits the 
assessment of the model’s robustness. The use of static 
clinical and laboratory data, without longitudinal meas-
ures such as follow-up MoCA scores, may also con-
strain the model’s ability to capture dynamic changes 
over time. Future work should focus on expanding 
datasets to include multi-center and diverse popula-
tions to improve generalizability. Incorporating addi-
tional biomarkers, such as inflammatory markers or 
neuroimaging, could enhance predictive accuracy. 
Prospective validation studies and the development of 
adaptive models capable of real-time updates are cru-
cial to ensure clinical applicability and evaluate the 
model’s impact on patient outcomes.

Conclusion
This study developed and validated multiple machine 
learning models based on clinical data from patients with 
cholestasis at Qingyang People’s Hospital, ultimately 
identifying LightGBM as the optimal predictive model. 
The LightGBM model demonstrated strong predictive 
performance and clinical utility, providing a robust tool 
for early identification of patients at risk of moderate 
to severe cognitive impairment. By integrating key pre-
dictors such as age, plasma D-dimer, and albumin, the 
model offers a scientific basis for risk stratification and 
supports targeted clinical interventions. This work high-
lights the potential of machine learning in advancing pre-
cision medicine for cholestasis-related complications and 
improving patient outcomes.
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