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Abstract
Background  The objective was to develop a biological age prediction model (NC-BA) for the Chinese population to 
enrich the relevant studies in this population. And to investigate the association between accelerated age and NAFLD.

Methods  On the basis of the physical examination data of people without noninfectious chronic diseases (PWNCDs) 
in Nanchang, Jiangxi, China, the biological age measurement method was developed via three feature selection 
methods (all-subset regression, LASSO regression (LR), and recursive feature elimination) and three machine learning 
algorithms (generalized linear model (GLM), support vector machine, and deep generalized linear model (deep 
GLM)). Model performance was evaluated by the coefficient of determination (R²) and mean absolute error (MAE). 
National Health and Nutrition Examination Survey (NHANES) data were used to verify the model’s generalizability. The 
standardized age deviation (SAD) was calculated to explore the associations between age acceleration and the risk of 
morbidity and mortality from NAFLD.

Results  The physical examination data of 26,356 PWNCDs were collected in Nanchang. Among the 26 biomarkers, 26 
and 24 biomarkers were associated with chronological age in the male and female groups, respectively (P < 0.05). The 
model combining the LR and deep GLM algorithms provided the most accurate measurement of chronological age 
(r = 0.58, MAE = 5.33) and was named the Nanchang-biological age (NC-BA) model. The generalizability of the NC-BA 
model was verified in the NHANES dataset (r = 0.57, MAE = 7.12). There was a significant correlation between NC-BA 
and existing biological age indicators (Klemera-Doubal method biological age (KDM-BA), PhenoAge, and homeostatic 
dysregulation (HD), r = 0.42–0.66, P < 0.05). The physical examination data of 1,663 and 1,445 patients with NAFLD 
from the Nanchang population and NHANES, respectively, were obtained. The SAD values of NAFLD patients were 
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Introduction
Aging is a natural phenomenon in living organisms that 
manifests as increased health risks and decreased physi-
ological functions over time [1]. In the context of global 
aging, the use of medical big data to explore character-
ization methods, evaluation indicators, and influenc-
ing factors is a key step in exploring aging [2]. Biological 
age (BA), an indicator of aging that is independent of 
chronological age (CA), is strongly associated with health 
characteristics such as physical function, cognition, mor-
bidity, and mortality [3]. Compared with CA, BA reflects 
the rate of aging associated with functional decline more 
accurately [4, 5].

In recent years, machine learning (ML) algorithms have 
made significant progress in BA estimation and healthy 
aging surveillance. Effective BA construction methods 
can help deepen our understanding of aging and enable 
more accurate disease risk stratification [6, 7]. Recently, 
a variety of ML methods have been proposed to quan-
tify BA in populations from different regions, such as 
the United States [8], Italy [7], and Singapore [9]. How-
ever, Cao et al. reported that these findings may not be 
generalizable to various populations due to differences 
in genetic and socioenvironmental factors [10]. More 
importantly, most ML-based BA studies have focused 
on European and American populations [8, 11], with 
relatively few studies on Chinese populations [10, 12]. 
To enrich the research on biological aging in the Chi-
nese population, we selected several machine learning 
models suitable for analyzing complex biological data. 
The generalized linear model (GLM) was chosen for its 
interpretability in elucidating the impact of biomarkers 
on biological aging and disease risk. The deep generalized 
linear model (deep GLM) integrates the strengths of deep 
learning and GLM, capturing complex nonlinear rela-
tionships in the data [13]. The support vector machine 
(SVM) excels in handling high-dimensional data and is 
routinely used in biomarker development [14, 15].

Nonalcoholic fatty liver disease (NAFLD) is currently 
the most common chronic liver disease, affecting at least 
a quarter of the adult population worldwide [16]. Nota-
bly, the prevalence of NAFLD continues to increase in 
China [17]. Studies have shown that biological aging 
is positively associated with mortality risk in NAFLD 
patients, especially in young adults, and that cellular 

senescence markers are significantly increased in NAFLD 
patients [18]. Researchers have also revealed a significant 
association between biological aging and an elevated 
risk of NAFLD [19], with advanced biological aging spe-
cifically linked to nonalcoholic steatohepatitis [20]. How-
ever, studies on aging in Chinese patients with NAFLD 
are still scarce.

This study aims to establish a biological age predic-
tion model applicable to the Chinese population, fur-
ther explore the validity and application potential of BA, 
and fill the gap in aging research for Chinese NAFLD 
patients. Here, we established a BA measure, Nanchang-
biological age (NC-BA), based on data from Nanchang 
and the National Health and Nutrition Examination Sur-
vey (NHANES). The generalizability of the model was 
assessed by comparing NC-BA with BA indicators in the 
literature, including the Klemera-Doubal method (KDM) 
biological age [21], PhenoAge [22], and homeostatic 
dysregulation (HD) [23]. In addition, we assessed age 
acceleration in the NAFLD population by standardized 
age deviation (SAD), which is linked to all-cause mortal-
ity. It is expected to provide new methods and empirical 
support for the assessment of aging in Chinese NAFLD 
patients, and to aid in the development of early interven-
tions and precision medicine.

Materials and methods
Study population
This multicenter study included individuals from 2 hos-
pitals in Nanchang between 2017 and 2022 and indi-
viduals who participated in the NHANES between 1999 
and 2018 (ethics numbers (SFYYXLL-PJ-2022-KY037, 
2024-95) for both hospitals). The NHANES is a sur-
vey conducted by the United States Centers for Disease 
Control and Prevention (CDC) to assess the health and 
nutritional status of noninstitutionalized civilians in the 
USA. A more detailed description of the NHANES study 
design and data is publicly available at ​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​d​c​.​​g​
o​v​​/​n​c​h​​s​/​​n​h​a​n​e​s​/.

Subjects aged 20 to 80 years were included in this study. 
Eighty years was chosen as the upper age limit because 
85 and 80 years were used as the coding cutoff ages in 
the 1999–2006 and 2007–2018 NHANES data, respec-
tively. In addition, owing to the large number of missing 

significantly greater than those of PWNCDs (P < 0.001). The SAD values of NAFLD patients with younger chronological 
ages were greater (P < 0.001). Higher SAD values were associated with a greater risk of all-cause mortality (HR = 1.73, 
P = 0.005).

Conclusions  This study provides a new model for biological age measurement in the Chinese population. There is a 
clear link between NAFLD and age acceleration.
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indicators for subjects under 20 years of age, we decided 
to exclude subjects in this age group.

Data preprocessing strategy
Both the hospitals and the NHANES collected labora-
tory data on biomarkers. Biomarkers that were common 
to the three datasets were included (Table 1). In addition, 
the largest dataset with the least amount of missing data 
was defined, accounting for the distribution of the num-
ber of available variables for the respondents. Individuals 

with more than 20% missing values were excluded from 
the database.

Given the large number of missing values (≤ 20%) in the 
data, the chi-square binning method was used to assess 
the ages participants of different sexes. That is, the ages 
were segmented, and the missing items of the age groups 
corresponding to the medians of each age group of males 
and females were used for filling. This not only facilitates 
the comprehension of the model’s logic but also ensures 
computational efficiency when dealing with large-scale 
datasets.

Definitions of PWNCDs and NAFLD patients
Owing to inconsistent information across the three data-
sets, the definitions of PWNCDs and NAFLD patients 
differed.

PWNCDs: For the Center 1 and Center 2 datasets, we 
first excluded participants with the following chronic dis-
eases associated with aging: hypertension, type 2 diabe-
tes, cancer (excluding minor skin cancer), chronic lung 
disease, heart problems (heart attack, coronary heart 
disease, angina, congestive heart failure), and stroke [24]. 
We further excluded patients with extreme or outlier val-
ues. After this screening process, the remaining subjects 
were defined as PWNCDs.

When processing the NHANES data, we adopted simi-
lar exclusion criteria but considered a broader range 
of chronic systemic diseases, including diseases of the 
digestive, cardiovascular, metabolic, visual, urogeni-
tal, respiratory, and immune systems; musculoskeletal 
diseases; and neoplasms [25]. We first identified and 
excluded individuals with these disorders and then simi-
larly excluded those with extreme or outlier values. After 
this series of screening steps, the final population com-
prised the PWNCDs included in the NHANES database.

NAFLD patients: NAFLD was diagnosed at Nanchang 
Hospital on the basis of the Guidelines for the Preven-
tion and Treatment of Nonalcoholic Fatty Liver Disease 
(2018 Edition) [26]: (1) the absence of a history of alco-
hol consumption or the consumption of less than 210 g 
of alcohol per week in men (less than 140 g per week in 
women); (2) the exclusion of diseases that can lead to 
fatty liver, such as infection with hepatitis C virus (HCV) 
genotype 3, Wilson’s disease, autoimmune hepatitis, total 
parenteral nutrition, etc.; and (3) when evaluating hepatic 
steatosis with abdominal ultrasound, two of the follow-
ing three criteria were met: anterior field echo enhance-
ment (“bright liver”), a liver echo greater than the kidney, 
far-field echo attenuation, and an unclear display of the 
intrahepatic duct structure. Ultrasound has high sensi-
tivity (85%) for detecting moderate to severe fatty liver, 
but its accuracy decreases in obese patients or those with 
comorbid kidney disease, and its ability to detect mild 
fatty liver is limited [27].

Table 1  Baseline characteristics of the study population in 
Jiangxi

PWNCDs
N = 39,833

NAFLD patients
N = 1,663

P value

Sex (%): < 0.001
  Male 23,557 (59.1) 1,499 (90.1)
  Female 16,276 (40.9) 164 (9.9)
AGE (mean (SD)) 40.99 (13.38) 46.27 (12.59) < 0.001
ALT (mean (SD)) 19.22 (9.96) 30.68 (21.76) < 0.001
AST (mean (SD)) 19.92 (5.09) 26.28 (10.78) < 0.001
BASO# (mean (SD)) 0.01 (0.02) 0.03 (0.02) < 0.001
BASO% (mean (SD)) 0.19 (0.28) 0.55 (0.29) < 0.001
CHOL (mean (SD)) 4.74 (0.81) 5.21 (1.04) < 0.001
EO# (mean (SD)) 0.11 (0.07) 0.16 (0.12) < 0.001
EO% (mean (SD)) 1.93 (1.14) 2.58 (1.82) < 0.001
GLU (mean (SD)) 4.95 (0.45) 5.33 (1.32) < 0.001
HCT (mean (SD)) 42.79 (3.63) 45.69 (3.57) < 0.001
HDL_C (mean (SD)) 1.37 (0.30) 1.21 (0.31) < 0.001
HGB (mean (SD)) 143.74 (13.34) 152.55 (13.10) < 0.001
PLT (mean (SD)) 222.32 (46.77) 234.89 (56.40) < 0.001
RDW (mean (SD)) 12.61 (0.60) 12.59 (0.97) 0.208
TBIL (mean (SD)) 14.65 (4.30) 15.20 (5.63) < 0.001
TGL (mean (SD)) 1.28 (0.60) 2.05 (1.99) < 0.001
URCA (mean (SD)) 347.33 (83.71) 408.88 (84.54) < 0.001
LYM (mean (SD)) 2.05 (0.50) 2.04 (0.59) 0.770
LYM% (mean (SD)) 35.25 (6.76) 33.43 (7.05) < 0.001
MCH (mean (SD)) 30.47 (1.27) 30.50 (2.14) 0.440
MCHC (mean (SD)) 335.91 (9.93) 333.84 (11.58) < 0.001
RBC (mean (SD)) 4.72 (0.44) 5.02 (0.48) < 0.001
MONO (mean (SD)) 0.39 (0.12) 0.43 (0.13) < 0.001
MONO% (mean (SD)) 6.75 (1.61) 7.00 (1.61) < 0.001
MPV (mean (SD)) 10.64 (0.89) 10.78 (1.03) < 0.001
PCT (mean (SD)) 0.24 (0.04) 0.26 (0.06) < 0.001
MCV (mean (SD)) 90.77 (3.54) 91.31 (5.32) < 0.001
Notes: PWNCDs = people without noninfectious chronic diseases; 
NAFLD = nonalcoholic fatty liver disease; ALT = alanine aminotransferase; 
AST = aspartate aminotransferase; BASO# = absolute value of basophils; BASO% 
= percentage of basophils; CHOL = total cholesterol; EO# = absolute value of 
eosinophils; EO% = percentage of eosinophils; GLU = glucose; HCT = hematocrit; 
HDL_C = high-density lipoprotein; HGB = hemoglobin; PLT = platelet; RDW = red 
blood cell distribution width; TBIL = total bilirubin; TGL = triglyceride; 
URCA = uric acid; LYM = percentage of eosinophils; LYM% = lymphocyte ratio; 
MCH = mean hemoglobin of red blood cells; MCHC = average hemoglobin 
concentration; RBC = red blood cell; MONO = monocyte count; MONO% = 
percentage of monocytes; MPV = average platelet volume; PCT = platelet 
volume; MCV = average red blood cell volume
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In the NHANES 2017–2018 cycle, liver fat was quanti-
fied by the controlled attenuation parameter (CAP) [27]. 
In this study, fatty liver disease (FLD) was diagnosed 
when the median CAP score was ≥ 285 dB/m, with an 
optimal sensitivity of 80% and a specificity of 77% for 
detecting hepatic steatosis [28]. In the absence of other 
chronic liver diseases or excessive alcohol consumption 
(< 20 g/day for men and < 10 g/day for women), individu-
als with FLD were identified as having NAFLD [29–31]. 
CAP outperforms ultrasound in detecting and grading 
hepatic steatosis, but it is influenced by factors such as 
diabetes and BMI, and it cannot effectively distinguish 
between adjacent grades of steatosis [27].

Machine learning for BA
Data standardization
To reduce the impact of different data ranges, the data 
were standardized via the Z score method before model-
ing so that they could be used for subsequent modeling 
and analysis.

Feature selection
We used all-subset regression, LASSO regression [32], 
and recursive feature elimination to select biomark-
ers for men and women. The study employed all-subset 
regression to comprehensively evaluate the optimal 
combination of features, utilized the automatic fea-
ture compression of LASSO with L1 regularization for 
dimensionality reduction, and applied recursive feature 
elimination to balance computational efficiency and the 
accuracy of feature selection.

Best model selection
In this study, the generalized linear model (GLM), deep 
generalized linear model (deep GLM), and support vec-
tor machine (SVM) methods were used to construct BA 
prediction models. The Center 1 dataset was divided into 
training and test sets at a ratio of 8:2, and CA was used as 
the target value to train the algorithm. Using the train-
ing dataset, a grid-search exploration of hyperparameters 
with a tenfold cross‐validation was performed for each 
model. Different machine learning methods were com-
pared according to the coefficient of determination (R²) 
and mean absolute error (MAE) [33].

Estimation of age acceleration
To accurately estimate age acceleration and exclude 
interference from physiological factors, we introduced 
the standardized age deviation (SAD):

	
SAD =

∆age − X∆age

Std∆age
� (1.1)

	 ∆age = BA − CA� (1.2)

where Δage represents the difference between theBA and 
the CA, ‾X represents the mean of Δage within a ± 5-year 
interval of the CA, and Std represents the standard devi-
ation of Δage within a ± 5-year interval of the CA.

KDM, phenoage, and HD algorithms
We used the _nhanes function of the BioAge software 
package to calculate 3 bioaging measurements: the KDM-
BA, PhenoAge, and HD.

Statistical analysis
Baseline measured traits are expressed as the mean (stan-
dard deviation [SD]) or number (percentage), and the 
correlations between traits and targets are expressed as 
Pearson correlation coefficients. We compared the SAD 
in NAFLD patients and PWNCDs and different disease 
states via t tests and analysis of variance, respectively.

We used mortality data from the 2019 Public Mortal-
ity File of the NHANES database and merged them with 
data from the NHANES database on the basis of respon-
dents’ SEQNs. In conducting the analysis, we considered 
the complex sampling design and weights of the data. We 
set the median SAD of males, females, and all patients as 
cutoff points and then divided the groups into a higher-
SAD group and a lower-SAD group. We then evaluated 
the relationship between SAD and all-cause mortal-
ity in patients with NAFLD by conducting CA-adjusted 
weighted Cox proportional hazards regression model 
analysis, using restricted cubic spline (RCS) to visualize 
the potential nonlinear association between SAD and all-
cause mortality in patients with NAFLD.

All the statistical analyses were performed via R version 
4.3.2. P < 0.05 (two-tailed) was considered statistically 
significant.

Results
Baseline characteristics of the population
A total of 39,774 PWNCDs were obtained among 
100,063 individuals in two centers in Nanchang. As 
shown in Fig. 1, we used 26,356 PWNCDs in Center 1 to 
construct a BA prediction model and validated the model 
with 13,418 individuals from Center 2. In addition, 1,663 
patients with NAFLD were screened.

Comparison of feature selection methods and machine 
learning algorithms
After performing quality control, we obtained 26 vali-
dated biological traits and the basic characteristics of 
PWNCDs and NAFLD patients in Nanchang (Table  1). 
On the basis of the correlation analysis, 26 and 24 biolog-
ical traits were identified as candidate traits for CA in the 
male and female groups, respectively (P < 0.05, Fig.  2A, 
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B). As shown in Fig.  2C, there was a certain correla-
tion among these features, suggesting that the features 
needed to be screened during the modeling process. We 
compared the effects of three feature selection methods 
(all-subset regression, LASSO regression, and recursive 
feature elimination) on the performance of various ML 
algorithms (GLM, deep GLM, and SVM). Compared 
with the ML model without feature selection, the LASSO 
regression method can improve the performance of the 
model (Fig. 2D, E).

Further analysis revealed that the combination of the 
Lasso feature selection method and the deep GLM algo-
rithm had the best performance in predicting CA. The 
R2 values of this combination were 0.60 and 0.67 for 
males and females, respectively. As shown in Supple-
mentary Fig.  1, the combined method also performed 
best in terms of the MAE, with values of 6.78 for males 
and 5.78 for females. Supplementary Fig. 2 illustrates in 
detail the optimization process of lambda parameters 
in LASSO regression and its influence on feature selec-
tion. The most important features identified by Lasso for 
males were glucose (GLU) and red cell distribution width 
(RDW), whereas for females, total cholesterol (CHOL) 
and triglycerides (TGL) were highlighted as the most sig-
nificant (Supplementary Table).

Evaluating the performance of different models on the 
center 2 dataset
To verify the performance of different ML algorithms 
in predicting CA, the optimal feature selection method 
(LASSO) was applied in PWNCDs from Center 2. 
We assessed the different models by R2 and the MAE 
(Fig. 3A, B). The results show that the deep GLM has the 
best performance in predicting CA. Subsequently, this 
model was named the NC-BA model, and the Pearson 
correlation coefficient between CA and NC-BA was 0.58 
(Fig.  3C). These results indicated that the BA predicted 
by the deep GLM had a high correlation with the CA in 
external datasets.

Generalization of the NC-BA in the NHANES
We screened 101,316 individuals from the NHANES 
dataset and identified 11,447 PWNCDs (Fig. 4A). Addi-
tionally, we identified 1,445 patients with NAFLD from 
the NHANES dataset. The baseline characteristics of the 
PWNCDs and NAFLD patients are shown in Table 2.

We calculated the NC-BA of PWNCDs in the 
NHANES dataset. As shown in Fig.  4B, NC-BA was 
strongly correlated with CA in the NHANES dataset 
(r = 0.57, MAE = 7.12). This result suggested that the 
NC-BA has potential for use in different populations. 
To further validate the generalizability of the NC-BA, 
we calculated three BA measurements (KDM-BA, Phe-
noAge, and HD) via the _nhanes function of the Bio-
Age package [34]. We detected a significant correlation 

Fig. 1  Screening flow chart of Nanchang participants. PWNCDs, people without noninfectious chronic diseases
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Fig. 3  Performance of different models in predicting CA via the Center 2 dataset. (A) and (B) CA was estimated with three models, and the performance 
of the final implementation was compared on this external dataset. (A) Performance of the model for males and (B) performance of the model for females. 
(C) Correlation of CA with NC-BA calculated in the best machine learning mode (deep GLM)

 

Fig. 2  Comparison of different feature selection methods and different classes of ML models. (A) and (B) explore the correlation between biological 
traits and CA by sex via data from PWNCDs from Center 1. The color of the dot represents the P value, and the length of the horizontal line represents 
the Pearson correlation coefficient. (A) Correlations among males and (B) correlations among females. (C) Correlation heatmap of biomarkers in Center 1. 
(D) and (E) show the performance of different feature selection methods and models on the male and female datasets, respectively, to estimate BA. The 
control was no feature selection. The LASSO feature screening method and the deep GLM achieved the best performance
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between the NC-BA and these measurements (P < 0.05), 
and the correlation coefficients ranged from 0.42 to 0.72 
(Fig. 4C). These results suggest that the NC-BA has high 
accuracy and reliability in predicting BA.

Evaluating age acceleration in NAFLD patients from 
Nanchang
To evaluate the relationship between age acceleration and 
NAFLD patients in Nanchang, we obtained a measure of 
age acceleration (SAD) based on the NC-BA (Fig. 5). The 
average SAD of NAFLD patients was significantly greater 
than that of PWNCDs, indicating that NAFLD patients 
experienced a greater degree of aging (P < 0.001, Fig. 5A). 
As shown in Fig. 5B, the SAD of NAFLD patients tended 
to be on the older side. In addition, there was a negative 
correlation between the SAD and CA (r=-0.36, P < 0.001), 
suggesting a greater degree of aging in younger patients 
with NAFLD.

In this study, patients with NAFLD were followed up 
for a short period of one year. A total of 743 patients with 
NAFLD were followed up, and we observed the recovery 
periods of 552 patients. On this basis, we divided NAFLD 
patients into two subgroups: nonrecovered NAFLD 
patients and recovered NAFLD patients. By comparing 
the SAD at the time of NAFLD diagnosis, we found that 
the median SAD was the highest in the nonrecovered 
NAFLD group (0.50), followed by the recovered NAFLD 
group (0.32) (Fig. 5C). This result further confirmed the 
strong association between age acceleration and the 
pathological outcome of NAFLD.

Age acceleration in NAFLD patients from the NHANES
For the 1,445 patients with NAFLD from the NHANES, 
the SAD was significantly greater than that in the 
PWNCDs, and the distribution of the SAD tended to 
increase with age (Fig. 6A, B). Additionally, the SAD was 

Fig. 4  Generalizability of the NC-BA in NHANES data. (A) Flow chart of screening PWNCDs in the NHANES database. All data from the 1999–2018 NHANES 
cycle were collected, and individuals with chronic diseases and individuals with extreme values or outliers were excluded. As a result, there were 11,447 
PWNCDs in the NHANES database. (B) Correlation of CA with the NC-BA in PWNCDs from the NHANES database. (C) Correlation of the BA determined 
via different algorithms. We estimated the correlations among KDM-BA, PhenoAge, HD and NC-BA. The color depth indicates the magnitude of the cor-
relation coefficient
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significantly greater in younger NAFLD patients (r=-0.46, 
P < 0.001; Fig. 6B).

During a median follow-up of 25 months (interquar-
tile range (IQR) 18–32 months), 26 of the 1439 patients 
with NAFLD (1.81%) died. We assessed the estimated 
hazard ratios (HRs) for NAFLD under different SAD 
stratifications (Fig.  6C). The risk of all-cause mortal-
ity was significantly greater in the high-SAD group than 
in the low-SAD group (HR 6.25, 95% CI 1.44–27.05, 
P = 0.014), and the same was observed in men (HR 13.78, 
95% CI 2.30–22.55, P = 0.004). RCS analysis revealed 

that the SAD was positively and linearly associated with 
all-cause mortality in all patients with NAFLD (nonlin-
ear P = 0.287) and in male patients (nonlinear P = 0.275) 
(Fig.  6D, F). According to the CA-adjusted weighted 
Cox regression analysis, the risk of all-cause mortality 
increased by 106% in men (HR 2.06, 95% CI 1.51–2.82, 
P < 0.0001) for each unit of increase in the SAD in males 
and increased by 73% in all patients (HR 1.73, 95% CI 
1.18–2.55, P = 0.005).

Discussion
In this study, we developed a measurement of BA (NC-
BA) that is applicable to the Chinese population. By com-
prehensively comparing the combined methods of three 
feature selection and three ML algorithms, we found that 
the deep GLM algorithm using the LASSO method had 
the best prediction performance. Notably, LASSO regres-
sion identified key biomarkers from males and females. 
In males, GLU and erythrocyte-related markers were 
most prominent, highlighting the importance of glucose 
metabolism and erythrocyte status in biological aging. 
In females, lipid metabolism markers were particularly 
influential. These findings emphasize the gender differ-
ences in the physiological processes that promote biolog-
ical aging. NC-BA-based SAD data revealed a statistically 
significant difference between PWNCDs and NAFLD 
patients. Additionally, the SAD was related to the risk of 
death from NAFLD.

The generalizability of the NC-BA was evaluated in 
two independent populations. The correlation between 
BA and CA decreased after the model was applied to the 
NHANES dataset, which is consistent with the findings 
of Mamoshina et al. [10, 35]. This phenomenon may have 
arisen because of racial factors when the model was eval-
uated in different populations. Importantly, the influence 
of factors such as economic status, cultural and lifestyle 
on the aging process varies from country to country [36]. 
For example, dietary patterns, physical activity levels, 
and healthcare access differ between these populations, 
and these factors might influence both biological age and 
disease progression. In addition, slight operational biases 
between different laboratories may also have an impact 
on the results [35].

On the basis of NHANES data, three published meth-
ods for determining BA (KDM-BA, PhenoAge, and HD) 
were obtained and showed a moderate correlation with 
the NC-BA. The differences among BAs are largely due to 
the differences in algorithms/methods from which they 
are derived. In addition, biomarkers representing dif-
ferent physiological functions or systemic domains also 
affect the assessment of the aging process. Previous stud-
ies revealed that immunity, metabolism, liver dysregula-
tion and kidney dysregulation are associated with aging 
[37–41]. Therefore, we selected biomarkers reflecting 

Table 2  Baseline characteristics of the NHANES study 
population

PWNCDs
N = 11,447

NAFLD patients
N = 1,445

P value

Sex (%): 0.298
  Male 6,088 (53.2) 790 (54.7)
  Female 5,359 (46.8) 655 (45.3)
AGE (mean (SD)) 39.94 (14.78) 53.91 (15.93) < 0.001
ALT (mean (SD)) 21.34 (8.28) 26.53 (18.59) < 0.001
AST (mean (SD)) 22.13 (5.01) 22.80 (12.39) < 0.001
BASO# (mean (SD)) 0.04 (0.05) 0.06 (0.05) < 0.001
BASO% (mean (SD)) 0.67 (0.42) 0.78 (0.32) < 0.001
CHOL (mean (SD)) 4.93 (0.91) 4.93 (1.09) 0.913
EO# (mean (SD)) 0.16 (0.10) 0.22 (0.17) < 0.001
EO% (mean (SD)) 2.35 (1.31) 2.86 (1.99) < 0.001
GLU (mean (SD)) 4.98 (0.59) 6.24 (2.43) < 0.001
HCT (mean (SD)) 42.33 (3.92) 42.34 (4.11) 0.968
HDL_C (mean (SD)) 1.38 (0.35) 1.22 (0.32) < 0.001
HGB (mean (SD)) 14.38 (1.34) 14.24 (1.51) < 0.001
PLT (mean (SD)) 248.90 (53.02) 245.56 (64.97) 0.028
RDW (mean (SD)) 12.73 (0.78) 13.91 (1.28) < 0.001
TBIL (mean (SD)) 11.42 (4.20) 7.66 (4.29) < 0.001
TGL (mean (SD)) 1.32 (0.71) 2.07 (1.50) < 0.001
URCA (mean (SD)) 306.57 (76.59) 348.75 (87.92) < 0.001
LYM (mean (SD)) 2.08 (0.55) 2.35 (0.77) < 0.001
LYM% (mean (SD)) 31.04 (7.46) 31.30 (8.67) 0.209
MCH (mean (SD)) 30.50 (1.60) 29.52 (2.33) < 0.001
MCHC (mean (SD)) 339.66 (8.16) 336.06 (9.25) < 0.001
RBC (mean (SD)) 4.72 (0.46) 4.84 (0.50) < 0.001
MONO (mean (SD)) 0.52 (0.15) 0.61 (0.26) < 0.001
MONO% (mean (SD)) 7.70 (1.88) 8.01 (2.36) < 0.001
MPV (mean (SD)) 8.16 (0.82) 8.27 (0.90) < 0.001
PCT (mean (SD)) 0.20 (0.04) 0.20 (0.05) 0.632
MCV (mean (SD)) 89.78 (4.05) 87.76 (5.76) < 0.001
Notes: PWNCDs = people without noninfectious chronic diseases; 
NAFLD = nonalcoholic fatty liver disease; ALT = alanine aminotransferase; 
AST = aspartate aminotransferase; BASO# = absolute value of basophils; BASO% 
= percentage of basophils; CHOL = total cholesterol; EO# = absolute value of 
eosinophils; EO% = percentage of eosinophils; GLU = glucose; HCT = hematocrit; 
HDL_C = high-density lipoprotein; HGB = hemoglobin; PLT = platelet; RDW = red 
blood cell distribution width; TBIL = total bilirubin; TGL = triglyceride; 
URCA = uric acid; LYM = percentage of eosinophils; LYM% = lymphocyte ratio; 
MCH = mean hemoglobin of red blood cells; MCHC = average hemoglobin 
concentration; RBC = red blood cell; MONO = monocyte count; MONO% = 
percentage of monocytes; MPV = average platelet volume; PCT = platelet 
volume; MCV = average red blood cell volume
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the immune system (such as platelets), cardiometabolic 
system (such as total cholesterol), hepatic system (such 
as alanine aminotransferase), and renal system (such as 
uric acid) for estimating the NC-BA. By integrating these 
multisystem biomarkers, we can provide a more compre-
hensive picture of the aging process.

In most existing studies, age acceleration is directly cal-
culated by the residual value of the BA returned to the 
CA [24, 42, 43]. Considering the different rates of aging 
in individuals at different ages [44], in this study, we cal-
culated the mean and standard deviation of the difference 
between the BA and CA for each individual on the basis 
of the population of PWNCDs within a ± 5-year range. 

Fig. 6  Assessing age acceleration in NAFLD patients from the NHANES via the SAD. (A) Violin plot showing the SAD distributions for PWNCDs and NAFLD 
patients. The horizontal bars within boxes denote medians, and the tops and bottoms of the boxes represent the 25th and 75th percentiles, respectively. 
(B) Scatter plot of the SAD and CA in NAFLD patients from the NHANES, with blue dots representing males and red dots representing females. The upper 
red line is the 97.5th percentile fitted line for the SAD in PWNCDs with different CAs, and the lower red line is the 2.5th percentile fitted line for the SAD in 
PWNCDs with different CAs. (C) The forest plot shows stratification by sex, with the median of each group’s SAD indicators divided into a lower SAD group 
and a higher SAD group, and the hazard ratios adjusted for CA. (D-F) The association between SAD and all-cause mortality. The limiting triplicate spline 
shows the relationship between the SAD and all-cause mortality in male NAFLD patients (D), female NAFLD patients (E), and all NAFLD patients (F), and 
the median of the SAD indicators is the dashed line according to the CA-adjusted hazard ratios. All P values for nonlinearity were > 0.05

 

Fig. 5  Age acceleration among PWNCDs and NAFLD patients in Nanchang. (A) Distribution of the SAD in PWNCDs and NAFLD patients from Nanchang. 
The distribution of the SAD is shown in gray for PWNCDs and in red for NAFLD patients. The straight line is expressed as the mean of the two groups of 
people. (B) Scatter plot of SAD and CA in NAFLD patients, with blue dots representing males and red dots representing females. The upper red line is the 
97.5th percentile fitted line for the SAD in PWNCDs with different CAs, and the lower red line is the 2.5th percentile fitted line for the SAD in PWNCDs with 
different CAs. (C) Comparative analysis of the SAD among PWNCDs, nonrecovered NAFLD patients, and recovered NAFLD patients. ∗ indicates P < 0.05, 
∗∗∗indicates P < 0.001
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This allowed us to compute the individual SAD, enabling 
comparisons of the current physiological state with the 
reference population as closely as possible.

NAFLD is a long-term disease, and monitoring the 
disease course and predicting mortality risk are effective 
indicators. BA, serving as such an indicator, can also cap-
ture physiological alterations earlier than specific phe-
notypes [12]. In the Nanchang study, patients who did 
not recover from NAFLD during subsequent follow-up 
showed signs of age acceleration at baseline. In addition, 
the mean SAD values of recovered NAFLD patients were 
between those of PWNCDs and those of nonrecovered 
patients. These findings suggest that SAD has the poten-
tial to be a useful tool for evaluating the severity of dis-
ease in patients with NAFLD. Moreover, we revealed that 
SAD was significantly associated with increased all-cause 
mortality risk among people with NAFLD, which is con-
sistent with the findings of a previous study [45].

In addition, we found that the SAD was significantly 
greater in younger NAFLD patients. This is likely due to 
the earlier exposure of the younger generation to vari-
ous risk factors and environmental insults, such as a poor 
diet, low physical activity, poor mental health, and envi-
ronmental stress [46]. Considering that BA is modifi-
able [47, 48], monitoring and treatment for these young 
patients may be highly important. Notably, in our study, 
the SAD of NAFLD patients from the NHANES data 
exhibited a more pronounced age trend. This is primar-
ily due to differences in diagnostic criteria, which result 
in a higher CA and disease severity for this patient 
population.

Some limitations may be mentioned in the present 
study. First, instead of directly calculating the calibra-
tion and predictive discriminatory power of the all-cause 
mortality model, we used the SAD which indirectly 
reflects the effect of accelerated age on the health status 
of patients with NAFLD. Future research should vali-
date the correlation of SAD with long-term mortality 
in NAFLD patients through longitudinal cohorts and 
improve its predictive accuracy via model calibration to 
enhance its clinical value for personalized health assess-
ment and risk stratification. Second, socioeconomic fac-
tors (e.g., education, income) may confound the results 
by interacting with genetic factors and lifestyle choices 
(diet, exercise) to influence biological aging and NAFLD. 
Future studies should control for these variables to better 
assess their impact.

In summary, we developed a valid measure of biologi-
cal aging for the Chinese population and demonstrated 
that SAD indicators are associated with the severity of 
NAFLD as well as the risk of death. This study not only 
validates the application of machine learning in geron-
tology but also deepens our insight into the multifaceted 
nature of aging.

Conclusion
We successfully developed a BA prediction model, the 
NC-BA, suitable for the Chinese population. We also 
showed that NC-BA is generalizable across populations 
and is correlated with existing biological age indicators. 
Furthermore, we used SAD to assess age acceleration in 
NAFLD patients and found an association between SAD 
and the severity of NAFLD. Additionally, we found that 
SAD was associated with the risk of all-cause mortality in 
these patients.
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