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Abstract 

Purpose  The distinction between complicated appendicitis (CAP) and uncomplicated appendicitis (UAP) remains 
challenging. The purpose of this study was to construct a safe and economical diagnostic model that can accurately 
and rapidly differentiate between CAP and UAP.

Methods  Patient data from 773 appendectomies were retrospectively collected, important features were selected 
using random forests, and the data were divided into training and test sets in a 3:1 ratio. An integrated learning 
algorithm, Extreme Gradient Boosting (XGBoost), was introduced to predict the risk of CAP and compared with Sup-
port Vector Machine (SVM), Random Forest (RF), and Decision Tree (CART) algorithms. A comprehensive comparison 
of the four algorithms was performed using model performance metrics such as the area under the receiver’s operat-
ing characteristic curve (AUC), sensitivity, specificity, accuracy, precision, negative predictive value(NPV), positive 
predictive value(PPV),calibration curves, and clinical decision curve analysis (DCA).

Result  The results show that all four prediction models exhibit some predictive ability. The XGBoost model showed 
the best prediction with AUC, accuracy, sensitivity, specificity,NPV and PPV of 0.914, 0.855, 0.865, 0.846,0.848 and 0.897, 
respectively, followed by the SVM model with results of AUC, accuracy, sensitivity, specificity,NPV and PPV of 0.882, 
0.819, 0.865, 0.779, 0.770 and 0.871, respectively. XGBoost and SVM models show very good calibration. The XGBoost 
model showed better net clinical benefit compared to the DCA curves of the other models.

Conclusion  Predictive models based on the XGBoost algorithm have good performance in predicting the risk 
of acute appendicitis progressing to complicated appendicitis, which helps to optimize clinical decision making.
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Introduction
Acute appendicitis is one of the most common acute 
abdominal surgical disorders globally, and the lifetime 
risk of appendicitis in the United States is estimated to 
be approximately nine percent, with a prevalence of 
16–40% for complicated appendicitis [1]. In uncompli-
cated appendicitis, conservative antibiotic therapy is both 
effective and safe; in contrast, most patients with com-
plicated appendicitis require emergency appendectomy, 
and delayed removal of complicated appendicitis leads 
to additional complications [1, 2]. Although the mortal-
ity rate for uncomplicated appendicitis is about 0.1%, the 
risk of death for complicated appendicitis caused by a 
perforated or gangrenous appendix is significantly higher, 
up to five to six percent [3, 4]. Therefore, it is very impor-
tant to differentiate between these two diseases in time.

The preoperative diagnosis of appendicitis is mainly 
based on medical history, physical examination, labora-
tory tests, and imaging. Through these diagnostic meth-
ods, more than 90% of acute appendicitis patients can 
achieve early and accurate diagnosis [5], However, these 
methods will be challenging to differentiate between 
complicated appendicitis and uncomplicated appendici-
tis. The AIRS and Alvarado scoring systems used to diag-
nose acute appendicitis are constructed on the basis of 
clinical presentation and laboratory findings [6, 7].These 
scoring systems are simple to use but are highly subjec-
tive and do not effectively differentiate between compli-
cated and uncomplicated appendicitis [8]. There are also 
several CT-based scoring systems that improve sensitiv-
ity and specificity to about 80% [9, 10], CT examinations 
increase radiation exposure and economic burden for 
patients, and the diagnostic results obtained in exchange 
for increased radiation exposure still need to be further 
improved.The scoring systems of Appendix Severity 
Index(APSI) and Atema et  al. combined clinical use of 
CT imaging findings for the prediction of complicated 
appendicitis, and although the results of the two stud-
ies possessed a high specificity of 93% and a sensitivity 
of 90.2%, respectively [11, 12], a study validating these 
two studies showed that both scoring systems performed 
poorly overall [13].

In recent years, machine learning techniques have been 
widely used in clinical medicine, especially in predictive 
models, which improve the accuracy of predictions by 
learning from data and experience [14]. Some research-
ers, tried to apply machine learning to the prediction of 
complicated appendicitis.Tuong-Anh Phan-Mai et  al. 
combined clinical data and ultrasound results to pre-
dict the risk of complicated appendicitis using various 
machine learning algorithms.The gradient boosting 
model showed a strong performance (AUC 0.890, accu-
racy 0.810) [15]. Hilmi Yazici et  al., on the other hand, 

evaluated the performance of multiple machine learning 
algorithms for the prediction of complex appendicitis in 
conjunction with clinical data and abdominal CT results, 
with multiple algorithms demonstrating more than 90% 
accuracy and specificity, but only 60% sensitivity [16]. 
Currently relevant predictive models are very depend-
ent on imaging and there is still room to increase their 
performance. Therefore, a new approach to rule out com-
plicated appendicitis is urgently needed. Therefore, an 
urgent need exists for a new method to rule out compli-
cated appendicitis.

XGBoost is a relatively novel and efficient machine 
learning method that combines multiple decision trees 
in a boosted manner, with the advantages of saving 
resources, less training time, and higher accuracy, devel-
oped by Chen and Guestrin in 2016, and was first used 
in fields such as transportation and electronics [17–19] 
and is now gradually being applied to many aspects of 
the medical field, e.g., the prediction of early-stage lung 
cancer, type 2 diabetes, myocardial infarction, etc., all 
of which have demonstrated good prediction results 
[20–22]. In this study we attempted to use the XGBoost 
algorithm for risk assessment of complicated appendi-
citis using only clinical data with the aim of improving 
the accuracy of identifying non-complicated appendi-
citis from complex appendicitis, which is an innovative 
application of the XGBoost algorithm in the field, and to 
compare it with other currently dominant machine learn-
ing models.The model is finally interpreted through the 
SHapley’s method of additive interpretation (SHAP).

Methods
Patient and data
This retrospective study included all patients who under-
went appendectomy between January 1, 2020, and 
December 30, 2023, at Wenzhou Central Hospital (Zhe-
jiang Province, China). Inclusion criteria were all patients 
with histologically reported appendicitis, and patients 
who met one of the following criteria were excluded from 
the study: 1. patients who were not ultimately diagnosed 
with acute appendicitis (e.g., histology reported as nor-
mal appendix as well as appendiceal tumor); 2. samples 
with obvious errors in the data (e.g., erythrocyte count of 
0.1 × 1012/L); and 3. samples with greater than 50% miss-
ing data. After the above inclusion and exclusion criteria, 
a total of 773 patients were finally enrolled in the study 
(Supplementary Fig.  1). For the small amount of miss-
ing data in this group of patients, we utilized the miss-
Forest package to fill in the missing values, the median 
to fill in the continuous variables, and the plurality to 
fill in the categorical variables.Data on all patients were 
collected through electronic medical records, includ-
ing demographic data (gender, age, area of residence, 
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underlying disease), vital signs (temperature, heart rate, 
systolic blood pressure, diastolic blood pressure), preop-
erative clinical manifestations (appetite, nausea or vomit-
ing, diarrhea, right lower abdominal tenderness, rebound 
tenderness and myalgia, metastatic right lower abdomi-
nal pain, whether the time between pain and surgery was 
greater than 24 h, and the degree of pain), laboratory 
findings (white blood cell, red blood cell count, neutro-
phil, lymphocyte, monocyte, and eosinophil percentages, 
hemoglobin, erythrocytes, platelets, C-reactive protein, 
glucose level, blood urea nitrogen, blood creatinine, and 
total bilirubin), and the presence or absence of fecaliths. 
Underlying diseases include diabetes, hypertension, myo-
cardial infarction, heart failure, chronic kidney disease, 
chronic liver disease, and chronic lung disease. Based 
on the VRS score, the pain level was categorized as mild, 
moderate, and severe. Based on the surgical reports and 
histopathologic findings of the appendix, the patients 
were divided into two groups: the uncomplicated appen-
dicitis group and the complicated appendicitis group. 
Patients were considered to have CAP if they had (1) 
perforated appendicitis, (2) gangrenous appendicitis, or 
(3) complications such as diffuse peritonitis and patho-
logical findings of abscess formation [2, 5]. Simple and 
suppurative appendicitis were categorized as UAP [2, 5]. 
The study follows the revised Declaration of Helsinki and 
was approved by the the ethics committee of Wenzhou 
CentralHospital.

Feature selection
For predictive models, too many features increase the 
risk of model overfitting and can predict diseases more 
cumbersome in clinical work. To reduce the number of 
features to be included, we also investigate the impor-
tance of predictor variables, in this paper, we use the 
Mean Decrease Accuracy function provided by RF for 
feature selection, which ranks the importance of the fea-
tures by directly measuring the impact of each feature on 
the accuracy of the model, and use a bar chart to visual-
ize the obtained importance ranking of the features, and 
then exclude unimportant, This operation does not sig-
nificantly affect the accuracy of the model, and we finally 
include the top 15 features for model training.

Model development
Machine learning models were developed and validated 
using R software (version 4.1.4, https://​www.​rproj​ect.​
org/). The XGBoost model and three other common 
machine learning predictive models were constructed by 
dividing the data into training and test datasets in a 3:1 
ratio, with “whether or not it is complicated appendicitis” 
as the main output of the model, and accuracy and AUC 
value as the endpoint variables. The models were also 

evaluated by calculating AUC, accuracy, sensitivity, spec-
ificity, precision, recall, positive predictive value(PPV) 
and negative predictive value(NPV).

XGBoost model: XGBoost is a powerful integrated 
learning algorithm, a modification of gradient-boosted 
Decision Trees (GBDT), which integrates many weak 
classifiers to form a single strong classifier. The algorithm 
has good learning results and efficient training speeds 
and is able to produce prediction accuracies that match 
many state-of-the-art supervised learning techniques. 
In this study, we use the “XGBoost” package for model 
training, and use cross-validation and grid search to opti-
mize the XGBoost model parameters in the training set, 
and finally we obtain the optimal model parameters, eta, 
nrounds, max_depth, gamma. subsample, which are 0.3, 
1000, 2, 0.001 and 0.7 respectively, subsample are 0.3, 
1000, 2, 0.001, and 0.7, respectively, which control the 
learning rate of the model, the number of decision trees, 
the maximum depth of the decision tree, the smallest 
sub-weight in the decision tree, the minimum loss reduc-
tion (gamma) required for partitioning, and the number 
of columns to be subsampled when building the tree. 
Finally, the model is retrained using the optimal hyperpa-
rameters described above and final predictions are made 
on the test set.

SVM model: SVM is a widely used supervised machine 
learning algorithm with the goal of creating a hyperplane 
that can effectively partition a given dataset into different 
classes. The"e1071"package was used for training, and the 
Gaussian kernel function was used to establish the non-
linear decision boundary, and the hyperparameters cost 
and gamma were set to 1 and 0.1, respectively. Cost is a 
penalty parameter in SVM that controls how much the 
model is penalized for misclassification and indirectly 
controls the generalization ability of the model. Gamma 
controls the complexity of the model by regulating the 
distribution of the data in the feature space.

RF model: Random forest is a commonly used inte-
grated learning algorithm in the field of machine learning, 
which consists of a number of decision trees, by combin-
ing the predictions of multiple decision trees and thus 
improving the performance of the model. The random 
forest model is trained using the"randomForest"package 
in the R software, using two hyperparameters, ntree, and 
mtry. ntree is used to set the tree of the decision tree in 
the random forest, and mtry is used to set the number of 
variables that can be selected at each node, and the origi-
nal parameters are set to 500 and 6, respectively, and then 
determined the values of ntree and mtry when the error 
value is minimized.

Decision tree model: A decision tree consists of root 
nodes, branch nodes, and leaf nodes, which can progres-
sively partition the data set based on the input features, 

https://www.rproject.org/
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and ultimately be able to predict the class of the tar-
get variable based on the values of the features. We use 
the"rpart"package to train the decision tree model, using 
two hyperparameters, cp, and split. cp is the complexity 
parameter of the tree, which can be used as a penalty fac-
tor to control the size of the tree, and split controls the 
splitting rule of the tree."gini"is set as the splitting rule 
and the result will be constructed as a CART decision 
tree model. The initial cp value is set to 0.001, then the 
optimal cp value is found and pruned based on the opti-
mal cp value to finally output the decision tree model.

Model evaluation
To evaluate the predictive models using the test dataset, 
we plotted receiver operating characteristic curves(ROC), 
calculated the corresponding AUC, accuracy, sensitivity, 
specificity, precision, recall, PPV and NPV to evaluate the 
model discrimination. Brier scores and calibration curves 
were used to evaluate the calibration of the model, and 
clinical decision curve analysis (DCA) was used to evalu-
ate the net clinical benefit of the model.

Model interpretation
Understandability of predictive models is important in 
clinical practice.SHAP theory, derived from cooperative 
game theory, provides a rigorous and highly interpret-
able tool. We analyze and discuss models with the high-
est overall performance using SHAP-based explanatory 
methods to reveal their predictive mechanisms and char-
acteristic contributions.

Statistical analysis
All statistical analyses were performed using R software 
(version 4.1.4, https://​www.​rproj​ect.​org/),Python(version 
3.9.12) software,and SPSS (version 24.0, IBM).

Continuous variables: different representations are 
used depending on the type of their distribution. For nor-
mally distributed data, mean ± standard deviation (SD) 
is used; for non-normally distributed data, median and 
interquartile range (IQR) are used.

Categorical variables: expressed as frequencies and 
percentages. In the table, these data will be presented as 
“n (%)”, where “n” denotes the number of samples in a cat-
egory and “%” denotes the proportion of the total sample 
in that category.

Between-group comparisons: for normally dis-
tributed data, the t-test was used for between-group 
comparisons; for non-normally distributed data, the 
Mann–Whitney U-test was used for between-group 
comparisons. Between-group comparisons for categori-
cal variables were tested using the chi-square test. The 
original hypothesis (H0) was that the distribution of the 
two groups of data was the same, and the alternative 

hypothesis (H1) was that the distribution of the two 
groups of data was different. The two-sided significance 
level for all tests was set at five percent (p < 0.05).

Results
Baseline characteristics of participants
A total of 773 patients were enrolled in the study, out 
of which 357 patients were diagnosed with complicated 
appendicitis (46.2%). In the CAP group, age, body tem-
perature, heart rate, eosinophil percentage, platelets, 
CRP, blood glucose, and urea nitrogen were significantly 
higher than in the UAP group, and systolic blood pres-
sure, monocyte percentage, erythrocyte percentage, and 
total bilirubin were significantly lower in the CAP group 
than in the UAP group. Also compared to the UAP group, 
89% of patients in the CAP group had WTOG24 h. Other 
key demographics, clinical presentation, and laboratory 
findings are summarized in Table 1.

Distribution of variable screening results and data sets
Appendicitis type was used as an outcome variable, 
and there were 31 predictor variables. The results of 
feature selection performed by Mean Decrease Accu-
racy are shown in Fig.  1. We included the top 15 pre-
dictor variables in the subsequent model construction, 
which were, in order, CRP、WTOG24 h、Muscular 
tone、HR、Platelet、Body temperature、UN、Eosino
phils、SBP、Blood glucose、Monocytes、Age、Neut
rophils、Lymphocytes and Erythrocyte. After removing 
redundant variables, patients were divided into a training 
set (n = 580) and a test set (n = 193) in a ratio of 3:1, and 
all features of the samples were comparable in the train-
ing and test data sets (Supplementary Table 1).

Comparison with other prediction models
First, we train the model on XGBoost, RF, SVM, and 
CART in the training dataset, respectively. In the training 
set, XGBoost, RF, and SVM perform very well in terms 
of discrimination with AUCs of 0.996, 1.0, and 0.951 and 
accuracies of 96.7%, 99.7%, and 91.2%, respectively, while 
possessing very good sensitivity, specificity, NPV,and pre-
cision, while performing the worst in the CART model 
with AUCs and accuracies of 0.82 and 80.3% (Table  2). 
Although XGBoost, RF, and SVM models perform well in 
the training set, it does not mean that they have better 
generalization ability.

Subsequently, we validated the model in the test data-
set, and the results show that the XGBoost model exhib-
its fairly good discrimination, with AUC, sensitivity, 
specificity, precision, PPV, NPV, and accuracy of 0.914, 
86.5%, 84.6%, 82.8%, 84.8%, 89.7%,and 85.5%, respec-
tively, in comparison to RF, which, although it performs 
the best in the training set, shows a significant decrease 

https://www.rproject.org/
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Table 1  Baseline characteristics of patients

Characteristic Total (n = 773) UAP (n = 416) CAP(n = 357) P value

Gender(n,%) 0.109

  Female 328(42) 188(45) 140(39)

  Male 445(58) 228(55) 217(61)

Age,year(IQR) 41(30,55) 37(28,50) 46(33,61) 0.000

Residential area,(n,%) 0.088

  Rural 461(60) 236(57) 225(63)

  Urban 312(40) 180(43) 132(37)

ULDS, (n, %) 0.005

  No 619(80) 349(84) 270(76)

  Yes 154(20) 67(16) 87(24)

BT,℃(IQR) 37.3(36.8,37.9) 37.1(36.7,37.6) 37.5(36.9,38.2) 0.000

SBP,mmHg(IQR) 123(110,135) 128(113,139) 118(108,132) 0.000

DBP,mmHg(IQR) 75(68,83) 76(69,83) 75(67,83) 0.174

HR, Times/min(IQR) 85(75,101) 80(72,92) 94(79,108) 0.000

Appetite, (n, %) 0.858

  Good 158(20) 88(21) 70(20)

  Moderate 223(29) 118(28) 105(29)

  Bad 392(51) 210(50) 182(51)

Nausea or vomit, (n, %) 0.722

  No 342(44) 187(45) 155(43)

  Yes 431(56) 229(55) 202(57)

Diarrhea, (n, %) 0.492

  No 727(94) 394(95) 333(93)

  Yes 46(6) 22(5) 24(7)

MRLAP, (n, %) 0.226

  No 336(43) 172(41) 164(46)

  Yes 437(57) 244(59) 193(54)

Pain level, (n, %) 0.291

  Slight 202(26) 118(28) 84(24)

  Moderate 410(53) 216(52) 194(54)

  Severe 161(21) 82(20) 79(22)

Muscular tone, (n, %) 0.000

  No 541(70) 269(65) 272(76)

  Slight 149(19) 125(30) 24(7)

  Obvious 83(11) 22(5) 61(17)

TRLA, (n, %) 0.340

  No 4(1) 1(0) 3(1)

  Yes 769(99) 415(100) 354(99)

RPRLA, (n, %) 0.035

  No 184(24) 112(27) 72(20)

  Yes 589(76) 304(73) 285(80)

Leu,109/L(IQR) 9.3(6.5,13.8) 9.7(6.3,13.6) 9.1(6.6,14.1) 0.938

Neu,%(IQR) 77.2(66.8,86.4) 78.0(67.0,85.8) 76(66.5,86.6) 0.956

Lym,%(IQR) 14.2(7.8,22.4) 14(7.77,21.72) 14.6(7.9,23.1) 0.720

Mon,%(IQR) 6.5(4.6,8.4) 6.9(4.7,8.9) 6.2(4.5,7.8) 0.001

Eos,%(IQR) 0.8(0.1,2.1) 0.7(0.1,1.7) 1.2(0.1,2.6) 0.029

HB,g/L(IQR) 132(118,144) 131(118,144) 132(119,145) 0.821

Ery,1012/L(IQR) 4.4(3.9,4.9) 4.5(4.0,5.0) 4.3(3.9,4.7) 0.004

Platelet,109/L(IQR) 210(170,269) 201(164,239) 232(179,303) 0.000



Page 6 of 12Chen et al. BMC Gastroenterology          (2025) 25:295 

in the test set in terms of specificity, PPV, and accuracy 
both decreased significantly, 69.2%, 71.2%, and 78.2%, 
respectively. The diagnostic performance of the SVM 
model also showed good discrimination in the test data-
set, with AUC, sensitivity, NPV, and accuracy of 0.882, 
86.5%, 87.1%, and 81.9%, respectively, and specificity 
and accuracy showing lower 77.9% and 77%, which is 
still a little less than XGBoost’s performance in general. 
The corresponding ROC curves for the four models are 
shown in Fig. 2. To further assess the value of these pre-
dictive models for clinical applications, we plotted DCA 

curves (Fig.  3) using the test dataset for evaluating the 
expected net benefits of the models at the correspond-
ing risk thresholds. The results showed that the XGBoost, 
RF, and SVM models all showed substantial net benefits, 
with the XGBoost model showing superior net clinical 
benefit.

To understand the accuracy of the model predic-
tions, we used calibration curves in our test dataset to 
show the gap between the actual probabilities and the 
predicted probabilities as shown in Fig.  4, it is obvi-
ous that the XGBoost and SVM models show the best 

Table 1  (continued)

Characteristic Total (n = 773) UAP (n = 416) CAP(n = 357) P value

CRP,mg/L(IQR) 49.6(22.6,86.0) 43.8(12.6,64.5) 62.8(30.9,130.7) 0.000

BG,mmol/L(IQR) 5.3(4.6,6.6) 5.1(4.4,6.2) 5.9(4.9,7.3) 0.000

UN,mmol/L(IQR) 4.2(3.3,5.4) 3.8(3.0,4.9) 4.6(3.6,6.0) 0.000

Cr,μmol/L(IQR) 68(55,84) 69(56,81) 68(55,86) 0.562

TB,μmol/L(IQR) 13.6(9.5,19.4) 14.1(10.0,19.7) 13.0(8.8,19.1) 0.008

Appendix fecalith, (n, %) 0.006

  No 535(69) 306(74) 229(64)

  Yes 238(31) 110(26) 128(36)

WTOG 24 h, (n, %) 0.000

  No 226(29) 186(45) 40(11)

  Yes 547(71) 230(55) 317(89)

ULDS Underlying disease, BT Body temperature, SBP Systolic blood pressure, DBP Diastolic blood pressure, HR Heart rate, MRLAP Metastatic right lower abdominal 
pain, TRLA tenderness in the right lower abdomen, RPRLA Rebound pain in the right lower abdomen, HB Hemoglobin, CRP C-reactive protein, UN Urea nitrogen, 
WTOG24 h Whether the time from pain to operation is longer than 24 h, Leu Leukocyte, Neu Neutrophils, Lym Lymphocytes, Eos Eosinophils, Mon Monocytes, Cr 
Creatinine, Ery Erythrocyte, TB Total bilirubin, BG blood glucose
* p < 0.05 (significant)

Fig.1  Variable importance graph. The larger the Mean Decrease Accuracy value corresponding to the predictor variable, the greater the impact 
on the accuracy of the model’s predictions
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calibration ability, which indicates that the predictions 
of the models are highly consistent with the actual val-
ues. Finally, we also calculated the Brier scores for the 
XGBoost, RF, SVM, and CART models, which were 
0.118, 0.151, 0.202, and 0.139, respectively, indicating 
that all four prediction models have some predictive 
ability.

Feature‑based model interpretation
We calculated and visualized the SHAP values for each 
feature in the Xgboost model. The swarm plot (Fig. 5A) 
shows an overview of the contribution of all patient fea-
tures. In the swarm plot, features are sorted by the sum 
of the magnitude of the SHAP values of all samples, and 
the SHAP values are used to show the distribution of the 

Table 2  Diagnostic performance of different machine learning models

Outcome Dataset Xgboost Random forest CART​ Support vector machine

AUC​ Training 0.996(0.991,1.000) 1.000(1.000–1.000) 0.820(0.786–0.855) 0.951(0.932–0.970)

Test 0.914(0.874,0.955) 0.870(0.819–0.921) 0.742(0.671–0.813) 0.882(0.833–0.931)

Sensitivity(%) Training 95.9(94.3,97.5) 100.0(100.0,100.0) 72.8(69.2,76.4) 94.4(92.5,96.3)

Test 86.5(81.7,91.3) 88.8(84.4,93.2) 71.9(65.6,78.2) 86.5(81.7,91.3)

Specificity(%) Training 97.4(96.1,98.7) 99.4(98.8,100.0) 86.9(84.2,89.6) 88.5(85.9,91.1)

Test 84.6(79.5,89.7) 69.2(62.7,75.7) 75.0(68.9,81.1) 77.9(72.0,83.8)

Precision(%) Training 97.0(95.6,98.4) 99.3(98.6,100.0) 82.6(79.5,85.7) 87.5(84.8,90.2)

Test 82.8(77.5,88.1) 71.2(64.8,77.6) 71.1(64.7,77.5) 77.0(71.1,82.9)

Accuracy(%) Training 96.7(95.3,98.2) 99.7(98.8,100.0) 80.3(76.9, 83.5) 91.2(88.6, 93.4)

Test 85.5(80.5,90.5) 78.2(71.7,83.8) 73.6(66.8, 79.7) 81.9(75.7, 87.0)

PPV(%) Training 97.1(95.7,98.5) 99.3(98.6,100.0) 82.6(79.5,85.7) 87.5(84.8,90.2)

Test 84.8(79.7,89.9) 71.2(64.8,77.6) 71.1(64.7,77.5) 77.0(71.1,82.9)

NPV(%) Training 96.6(95.1,98.1) 1.00(100.0,100.0) 78.8(75.5,82.1) 94.9(93.1,96.7)

Test 89.7(85.4,94.0) 87.8(83.2,92.4) 75.7(69.6,81.8) 87.1(82.4,91.8)

Fig. 2  ROC curves for XGBoost, RF, CART, and SVM models in the test dataset
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impact of each feature. The bar graph shown in Fig.  5B 
illustrates the mean absolute value of the SHAP values 
for each feature. The graph shows that CRP,heart rate and 
WTOG24 h have higher mean values (Fig. 6B).

In addition Figs. 6A and B show the specific contribu-
tion of each feature in a single sample to the model pre-
diction from two perspectives. Among them, CRP and 
WTOG24 h have the most significant impact on model 
prediction. low values of CRP and WTOG24 h signifi-
cantly reduce the probability of model prediction in the 
negative category. Other characteristics such as age and 
systolic blood pressure also had an effect, but it was rela-
tively small. Overall, model predictions were primarily 
driven by CRP and WTOG24 h, two features that are 
closely associated with disease onset and progression in 
clinical practice.

Discussion
In this study, XGBoost was introduced for the first time 
for the prediction of complicated appendicitis. The study 
focuses on building an XGBoost prediction model for 
the prediction of complicated appendicitis by combining 

clinical and laboratory findings and comparing the 
results with several other traditional machine learning 
models.Based on the order of importance of the vari-
ables, we finally included 9 laboratory indicators and 6 
other clinical indicators, all of which were readily avail-
able before undergoing appendectomy, the top 5 predic-
tors of which were CRP, WTOG24 h, abdominal muscle 
tension, heart rate, and platelet count, which is slightly 
different from other similar studies, which may be related 
to the methodology of the study and the various param-
eters included, but similarly, CRP levels were significant 
in several studies [11, 23–25]. In addition, in order to 
provide clinicians with a deeper understanding of the 
model, we introduced SHAP into the Xgboost prediction 
model to further reveal the decision-making mechanism 
of the model, and analyzed the total contribution of each 
feature in the model, and the results showed that CRP 
and WTOG24 h occupied the most important position 
in the model’s contribution, which was in perfect agree-
ment with our Mean Decrease Accuracy feature selection 
results. This is fully consistent with our Mean Decrease 
Accuracy feature selection results.

Fig. 3  DCA curves for (a) XGBoost, (b) RF, (c) SVM, and (d) CART models in the test dataset
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Fig. 4  Calibration curves for (a) XGBoost, (b) RF, (c) SVM, and (d) CART models in the test dataset

Fig. 5  The SHAP plots illustrated the feature-based model interpretation process. A The beeswarm plot used SHAP values to show the distribution 
of each feature’s impacts. B The standard bar plot demonstrated the mean absolute value of the SHAP values for each feature
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CRP is a non-specific acute phase reactant that primar-
ily stimulates cell-mediated immunity and chemotaxis 
in inflammation. It has been shown that CRP levels were 
significantly higher in perforated appendicitis cases than 
in non-perforated cases, which is similar to our findings, 
in addition serum CRP concentration and severe appen-
dicitis were correlated, and elevated CRP was an inde-
pendent risk factor for predicting perforation in acute 
appendicitis [26, 27]. Nina A Bickell et  al. explored the 
risk of future appendiceal rupture in patients as the time 
since symptom onset without treatment increased, show-
ing that the risk was negligible in the first 24 h of symp-
tomatic untreated life, began to rise between 24 and 36 h, 
and then climbed to six percent in patients who had not 
been treated 36 h after symptom onset, and the guide-
lines recommend that for Treatment of patients with 
appendicitis should be limited to as few as 24 h after the 
onset of symptoms as possible [28, 29].

Several of the models we built were then internally vali-
dated in a separate cohort, and the XGBoost prediction 
model showed optimal predictive power, which cannot 
be separated from the superiority of the algorithm itself.
Similarly, Qingqing Li et  al. [30] constructed a variety 
of machine-learning models based on gene expression, 

including XGBoost, DT, SVM, K-Nearest Neighbors 
(KNN), LR, and RF for breast metastasis-assisted identi-
fication, with the XGBoost classifier achieving an overall 
higher average AUC (0.82); In addition, Tingting Fan et al 
[31] extracted patient data from the MIMIC-IV data-
base and constructed an XGBoost model for predicting 
the risk of diabetic ketoacidosis-associated acute kid-
ney injury in ICU patients and compared it with seven 
other machine learning models, and the XGBoost model 
performed the best among the eight machine learning 
models, with AUCs for the training and validation sets 
of 0.835 and 0.800 for the training and validation sets, 
respectively. The research on XGBoost will bring this 
excellent machine-learning method to the attention of 
more researchers and has many implications for future 
research. It is highly anticipated that in the future even 
better researchers will make more in-depth studies on 
XGBoost in the prediction of complex appendicitis, and 
even extend XGBoost to more medical fields.

Given the numerous adverse complications of com-
plicated appendicitis, early and accurate diagnosis 
of the disease can greatly reduce complications. This 
study is dedicated to determining whether a patient has 
progressed to complicated appendicitis using only the 

Fig. 6  SHAP plots demonstrated SHAP values from a case-based perspective. Sampled by model output, the overall SHAP plot (A) showed 
the decision process of all patients. The force plot (B) and the waterfall plot (C) demonstrated the proportion and absolute SHAP value of various 
features in the decision-making process for a single patient
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patient’s preoperative vital signs, laboratory tests, and 
clinical presentation, The constructed predictive model 
improves clinical decision-making in patients with 
suspected complex appendicitis and can be targeted 
to change high-risk patients to a higher level of care 
with early preoperative preparation as well as surgical 
interventions, yet antibiotic therapy is also a safe and 
effective option for low-risk patients, which can save 
low-risk patients from acute surgical risks. Dan Liang 
et al. [32] incorporated clinical features, CT visual fea-
tures, deep learning features, and radiomics features to 
develop a model using the CatBoost algorithm for the 
prediction of complicated appendicitis, and the model 
was validated at three other medical centers, and the 
results demonstrated moderate predictive performance 
with AUCs of 0.836, 0.793, and 0.72, respectively. Also 
for deep learning radiomics features, the model uses a 
manual depiction of regions of interest(ROI), which will 
be challenging to diagnose complicated appendicitis in 
emergency situations. Hui-An Lin et al. [33] utilized an 
ANN model to evaluate the diagnostic performance of 
nine different variable sets in a clinical model, and the 
results showed that Lin et al.’s model exhibited the most 
outstanding diagnostic performance, with a sensitivity 
and specificity of 85.7% and 91.7% in the test dataset, 
respectively, and that higher sensitivity and specific-
ity could reduce the possibility of leakage and misdi-
agnosis, and that the high performance of the model 
was attributed to the incorporation of the periappen-
diceal fluid and fat stranding signs, which are two very 
important radiologic Characterization. In contrast, our 
study demonstrated a very high level of accuracy even 
without relying on radiologic imaging, and high accu-
racy means that the diagnostic test correctly identifies 
the patient’s disease state in most cases, whether it is 
complex or uncomplicated appendicitis, which is criti-
cal for clinical decision making.This initiative will bring 
numerous benefits, first, by reducing the financial bur-
den on patients while eliminating the time spent wait-
ing for CT results; second, by reducing unnecessary 
radiation exposure to patients; and lastly, by allowing 
for adjunctive diagnostics in the absence of specialized 
equipment and personnel to make decisions for surgi-
cal decision making.

There are some limitations of our study. First, limited 
by the research platform and funding, our study was a 
single-center retrospective study with cases from the 
same medical institution and a limited number of cases, 
which may not be representative of a broad population, 
and we need to obtain a large sample in the future to 
further validate our findings; second, retrospective stud-
ies may have potential bias, which will result in a lack 
of extrapolation of our study, and we look forward to 

adopting a multicenter in our future studies, prospective 
design to improve the generalizability of the findings.

Conclusion
In this study, we developed and validated the XGBoost 
prediction model for risk assessment of complex appen-
dicitis and compared it with the current mainstream 
algorithms (SVM, RF and CART). The results show that 
XGBoost has the strongest discrimination and calibra-
tion and also has good generalization ability. The predic-
tive model developed in this study based on key clinical 
features and laboratory tests improves the ability to dis-
criminate between complex and uncomplicated appen-
dicitis, thus optimizing clinical decision-making. In 
current diagnostic practice, reliance on subjective clinical 
presentation and imaging may lead to missed or delayed 
diagnosis of complicated appendicitis, increasing the risk 
of complications such as perforation and abscess. This 
study provides a rapid and reliable diagnostic tool by 
integrating easily accessible clinical indicators, which fills 
the gaps in existing diagnostic methods and can reduce 
unnecessary imaging tests and decrease the risk of com-
plications, thus improving patient prognosis and the effi-
ciency of healthcare resource utilization.
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