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Abstract
Background Gastric precancerous lesions (GPL) represent a heterogeneous, multi-stage process that involves 
transition from a benign to a malignant state. To optimize prevention and intervention strategies, accurate methods 
must clearly distinguish between precancerous stages and predict progression risks at early stages.

Methods The metabolomic profiles of 188 GPL tissues and matched normal tissues were characterized using ultra-
high-performance liquid chromatography-tandem mass spectrometry. Both multivariate and univariate statistical 
analyses were used to identify metabolomic features differentiating normal, atrophic, and intestinal metaplasia states 
in the stomach, followed by preliminary functional validation.

Results From experiments conducted on two cohorts, we established a reliable clinical gastric tissue metabolomic 
map, which clearly distinguished between normal, atrophic, and intestinalized gastric tissues. We then identified 
metabolic biomarkers that differentiated various GPL stages. Furthermore, key metabolites were validated in in vitro 
studies. Relative acyl group and glycerophospholipid abundance was higher in normal gastric tissue when compared 
to GPL, whereas organic acids were more prevalent in precancerous tissues than in normal tissues. A combination 
of glycerophosphocholine, tiglylcarnitine, malate, sphingosine, and γ-glutamylglutamic acid may serve as powerful 
biomarkers to distinguish normal tissue from GPL.

Conclusion We used ultra-high-performance liquid chromatography with tandem mass spectrometry to effectively 
characterize metabolomic profiles in clinical gastric tissue samples. Key metabolites were identified and validated 
using targeted metabolomics. This study identified the metabolomic profiles of gastric tissues with atrophy and 
intestinal metaplasia of the gastric mucosa, uncovering and preliminarily validating key metabolites that may be 
used to assess high-risk populations and diagnose GPL, potentially advancing targeted gastric cancer prevention and 
treatment efforts.
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Background
Globally, gastric cancer (GC) is the fifth most common 
cancer and the third leading cause of cancer-related 
deaths [1]. Regrettably, the majority of patients receive 
a diagnosis at advanced or late local stages, leading to 
poor prognoses [2]. GC develops via a multi-step pro-
cess, beginning with superficial gastritis and advancing 
through to chronic atrophic gastritis (AG), intestinal 
metaplasia (IM), low-grade intraepithelial neoplasia, and 
high-grade intraepithelial neoplasia, ultimately leading 
to invasive GC [3, 4]. According to epidemiological data, 
AG is a prevalent and persistent condition, often without 
symptoms, affecting over half of the world’s population at 
some stage [5]. IM significantly increases GC risks, dou-
bling the likelihood of its occurrence [6]. Fortunately, at 
gastritis and IM stages, timely detection and interven-
tion can effectively control or even reverse the disease. 
However, once the disease has progressed to different 
intraepithelial neoplasia levels, it is difficult to manage 
progression with non-surgical treatments [7]. Therefore, 
identifying high-risk populations at AG and IM stages is 
crucial for developing and implementing effective pre-
vention and management strategies. While Helicobacter 
pylori (H. pylori) infection is strongly associated with 
gastritis and gastric disease advancement [8, 9], it does 
not directly cause GC [7]. Currently, limited biomarkers 
can accurately predict GPL progression. Therefore, to 
inform precise clinical intervention strategies, addressing 
GC prevention and control challenges require enhanced 
etiological research and the exploration of novel molecu-
lar features to delineate gastric lesion progression.

A fundamental feature of cancer cells is the reprogram-
ming of energy metabolism, which promotes tumor cell 
proliferation [10–12]. Metabolic dysregulation signifi-
cantly contributes to GC development, highlighting the 
need to characterize metabolic profiles associated with 
disease progression [13–16]. High-throughput metab-
olomics technology enables the identification and 
quantification of endogenous low-molecular-weight 
metabolites [17, 18], thereby highlighting complex 

interactions between the host, genes, and the environ-
ment [19]. Thus, metabolomics has become a promising 
tool for distinguishing GC molecular features and identi-
fying biomarkers [13, 20].

Many studies have investigated GC metabolomic 
molecular features and core metabolic pathways. Kuli-
gowski et al. used metabolomics to identify tryptophan, 
kynurenine, and phenylacetylglutamine as potential 
GC biomarkers, in their plasma metabolomic analysis 
of over 400 participants [21], Huang et al. showed that 
α-linolenic acid, linoleic acid, and palmitic acid were sig-
nificantly associated with IM progression [22]. To our 
knowledge, most gastritis and IM studies have focused 
on blood, urine, and other biological samples [22–24], 
with no direct research on lesion sites. In this study, we 
conducted a comprehensive metabolomic analysis of 
188 clinical tissue samples from 98 patients, focusing 
on AG and IM stages. Using pseudotargeted metabolo-
mics technology, which provides higher sensitivity and 
broader dynamic monitoring ranges when compared to 
untargeted metabolomics [25], we identified differential 
metabolites between AG, IM, and relatively normal tis-
sues, and explored the metabolic changes from normal to 
AG and progression to IM.

Materials and methods
Patients and tissue samples
Between April and June 2023, 26 patients from the 
Department of Gastroenterology at Jiangnan Univer-
sity Affiliated Hospital South Campus, who underwent 
gastroscopy or treatment, were enrolled for targeted 
metabolomics analysis. An additional 71 patients were 
recruited between July 2023 and April 2024 for potential 
metabolic biomarker verification. Patients were recruited 
with no history of gastric or other cancers and no other 
diagnosed specific diseases, including digestive system 
diseases, prior to sampling. Relatively normal tissue sam-
ples (controls) comprised of gastric mucosal tissues taken 
at 5  cm away from matched lesion sites. Samples were 
collected by two experienced gastroenterologists during 
endoscopic procedures, and histological identification 
was performed by pathologists. The Ethics Committee 
of Jiangnan University Affiliated Hospital approved the 
study and all patients provided written informed con-
sent before enrollment. Ethics number for: LS2024300. 
All patients provided written informed consent before 
enrollment. The patients’ baseline clinical characteris-
tics, including age, sex, and H. pylori infection status, are 
summarized in and Table  1, and the severity grading of 
H. pylori infection is provided in Supplementary Table 
4 [26]. Data and software availability pseudotargeted 
metabolomics data on gastric have been deposited in the 
European Bioinformatics Institute under accession code 
MTBLS11835.

Table 1 Clinicopathological characteristics of patients with N, 
AG and IM in this study
Characteristics Cohort 1 Cohort 2
Gender (no.)
Male 13 30
Female 13 41
Age (years, mean ± SD) 60.77 ± 9.42 56.79 ± 11.53
Helicobacter pyloriinfection 
status ( patients)
(-) 14 45
(+) 3 9
(++) 3 6
(+++) 3 8
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Sample preparation for pseudotargeted metabolomics 
analysis
Tissue samples were weighed, transferred to 2 mL tubes, 
and kept on ice. Next, 200 µL of cold methanol was 
added, and samples vortexed for 1 min. Two steel beads 
were added and samples ground at 50  Hz for 10  s; this 
procedure was performed 3–4 times under low tempera-
ture conditions. Samples then underwent 15 min of ultra-
sonic extraction in an ice bath, followed by centrifugation 
at 12,000 × g for 15 min at 4  °C. Supernatants (100 µL) 
were transferred to new tubes, freeze-dried, and stored at 
-20 °C. Metabolite extracts were redissolved in 100 µL of 
20% methanol/water prior to Ultra-Performance Liquid 
Chromatography-Tandem Quadrupole Mass Spectrom-
etry (UPLC-MS/MS).

UPLC-MS/MS conditions for pseudotargeted metabolomics
For metabolite analysis, we used the AB SCIEX Q-Trap 
5500 triple quadrupole mass spectrometer (AB SCIEX, 
USA), using both positive and negative electrospray ion-
ization modes with multiple reaction monitoring scan-
ning. LC separation was performed using an ACQUITY 
UPLC HSS T3 column (2.1 × 100  mm, 1.8  μm) (Waters, 
USA) for positive ion mode and an ACQUITY UPLC 
BEH C18 column (2.1 × 100 mm, 1.7 μm) (Waters, USA) 
for negative ion mode. The Exion LC AD system (AB 
Sciex, USA) featured a binary gradient pump, using 0.1% 
formic acid in water (solvent A) and acetonitrile (solvent 
B) as mobile phases at a flow rate of 0.35 mL/min. The 
gradient started at 5% solvent B, linearly increasing to 
99% in 11 min, holding for 2 min, then returning to 5% 
over the last 2 min. The column temperature was 50  °C 
and the injection volume was 5 µL.

MS parameters included an ion source temperature of 
550  °C, a curtain gas pressure of 35 psi, a collision gas 
gas pressure of 10 psi, and ionspray voltages of 5,500 V in 
positive mode and − 4,500 V in negative mode. Ion gases 
1 and 2 were both set to 60 psi. AB SCIEX Analyst 1.7.1 
was used to acquire data.

Targeted metabolomics conditions
To create a standard curve, a mixed standard solution 
containing 1 ppm (1ppm = 1  mg/L) of glycerophospho-
choline, sphingosine, malate, and γ-glutamylglutamic 
acid was prepared and diluted to 1, 5, 10, 50, 100, and 500 
ppb (1ppb = 1/1000ppm). A separate tiglylcarnitine dilu-
tion series was prepared over the 0.05–10 ppb concentra-
tion range. Standard curves were established by plotting 
analyte-to-internal standard area ratios against concen-
tration. The sample preparation as well as the metabolo-
mics mass spectrometry and chromatographic conditions 
were consistent with the pseudotargeted metabolomics 
method, except that the column was ACQUITY UPLC 
HSS T3 (2.1 × 100 mm, 1.8 μm). 

Reagents
Methanol (LC-MS grade), acetonitrile, and formic acid 
were obtained from ThermoFisher Scientific (USA). The 
1-methyl-3-nitro-1-nitrosoguanidine (MNNG) (CAS: 
70-25-7) and glycerophosphocholine (CAS: 28319-77-
9) were sourced from Shanghai Yuanye Bio-Technology 
Co., Ltd (Shanghai, China). Sphingosine (CAS: 764-22-
7), malate (CAS: 97-67-6), and γ-glutamylglutamic acid 
(CAS: 1116-22-9) were obtained from Shanghai Macklin 
Biochemical Co., Ltd (Shanghai, China). Tiglylcarnitine 
(CAS: 64681-36-3) was procured from Shanghai Zhenz-
hun Bio-Technology Co., Ltd (Shanghai, China).

Cell culture
GES-1 human gastric epithelial cells (iCell Bioscience 
Inc, Shanghai, China) were cultured to 60% confluence in 
six-well plates containing Roswell Park Memorial Insti-
tute 1640 medium plus 10% fetal bovine serum (FBS) and 
1% Penicillin-Streptomycin solution. A humidified envi-
ronment of 5% CO2 and 95% air was used to culture cells.

Cell viability assays
Cell viability was assessed using a Cell counting kit-8 
(CCK8) kit (Nanjing BEB Laboratories Co., Ltd, Nan-
Jing, China). Cells (8 × 103) were seeded in 96-well 
plates, allowed to adhere, treated with 1% FBS for 24 h, 
and exposed to varying metabolite concentrations for 
another 24  h. Supernatants were then removed, CCK8 
solution added, and cells incubated in the dark for 2–4 h. 
Next, to assess cell viability, the optical density at 450 nm 
was measured using a SpectraMax 190 light absorption 
enzyme labeler (Molecular Devices, USA).

Quantitative real-time polymerase chain reaction (qRT-
PCR)
Total RNA was isolated from cells by using the TRIzol 
reagent. qRT-PCR was performed according to the pre-
vious protocol [27, 28]. Sequences of the specific primer 
sets are as follows: CDX2: Forward: 5’- T T C A C T A C A G T 
C G C T A C A T C A C C A-3’, Reverse: 5’- C T G C G G T T C T G 
A A A C C A G A T T-3’, KLF4: Forward: 5’- G T G C C C C G A A 
T A A C A G C T C A-3’, Reverse: 5’-  T T C T C A C C T G T G T G 
G G T T C G- 3’, MUC2: Forward: 5’- G A G G G C A G A A C C 
C G A A A C C-3’, Reverse: 5’-  G G C G A A G T T G T A G T C G C 
A G A G-3’. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as a control (Supplement Table  3). 
The relative gene expressions were analyzed using 
2−ΔΔCTmethod.

Statistical analysis
MetaboAnalyst 6.0 was used for unsupervised princi-
pal component analysis and hierarchical data clustering. 
Samples were normalized for their respective masses 
to visualize the metabolomic profiles of N, AG and IM 
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participants. Multivariate analyses, such as partial least 
squares discriminant analysis (PLS-DA) and the orthog-
onal partial least squares discriminant analysis (OPLS-
DA), were performed to identify key differentiating 
features between groups. Models were validated using 
10-fold cross-validation, with results showing high R2 
and Q2 values, indicating model reliability, and a permu-
tation testing was performed 200 times to assess the risk 
of overfitting for the PLS-DA model. Metabolites with 
Variable Importance in the Projection (VIP) > 1, p < 0.05, 
and Fold Change (FC) > 1.5 or < 0.5 were selected as dif-
ferential metabolites. GraphPad Prism 9.4.1 was used for 
univariate statistical analysis. One-way analysis of vari-
ance (ANOVA) with Tukey’s post hoc test was applied for 
multiple group comparisons. An FDR-adjusted p-value 
threshold of 0.05 was used to assess statistical signifi-
cance. For two-group comparisons, Student’s t-test or 
the Mann-Whitney U test was applied as appropriate. 
The data was presented as mean ± standard error (SEM). 
p < 0.05 was considered statistically significant.

Results
Metabolic profiling of clinical gastric tissue samples
Given limited sample availability (approximately 5  mg), 
we performed pseudotargeted metabolomics. This 
approach provides greater sensitivity and a broader 
dynamic range when compared to non-targeted metabo-
lomics, while eliminating complex feature detection or 
peak alignment [25].

First, we collected and prepared equal amounts of gas-
tric mucosal tissue samples from clinically N, AG, and IM 
sites.AG Using UPLC-MS/MS pseudotargeted metabolo-
mics, we identified 433 metabolites across both positive 
and negative ion modes. To assess instrument stability, 
we prepared tissue samples with varying concentration 
gradients and identified 152 and 147 metabolites in posi-
tive and negative ion modes, respectively, thereby estab-
lishing a database for targeted metabolomics analysis 
(Supplement Tables 1 and 2).

Metabolic differences between AG, IM, and normal tissues
Pseudotargeted metabolomics was performed on tissue 
samples (N = 20, AG = 20, and IM = 20) using UHPLC-
MS/MS (Table 1, Cohort 1), with the relative quantifica-
tion of 433 metabolites (Fig.  1A). A PLS-DA score plot 
showed that IM and Normal groups formed two dis-
tinct clusters, with the AG group overlapping to varying 
degrees with these groups. This observation is consis-
tent with the Correa cascade, in which the disease pro-
gresses from N, AG to IM and eventually to gastric 
cancer (Fig. 2A). Thus, the PLS-DA model demonstrated 
good reliability, as evidenced by a 10-fold cross-valida-
tion yielding high R2 (0.83) and positive Q2 (0.57) values 
(Fig. 2B).

To elucidate metabolic alterations during disease 
progression, pairwise comparisons between Normal 
vs. AG, IM, and AG vs. IM were conducted. OPLS-DA 
supervised analysis identified distinct group separa-
tions, revealing distinct metabolic changes as the disease 
advanced from gastritis to IM (Fig. 2C–E). Using VIP > 1, 
P < 0.05, and FC > 1.5 or < 0.5 criteria, 18 metabolites were 
identified (Table 2), including organic acids, four amino 
acids and derivatives, three lipids, one glycerophospho-
lipid, antibiotics, sphingolipids, and other compounds 
(Fig.  2F). Fatty acyl groups and glycerophospholipids 
were more abundant in normal gastric tissue when com-
pared to GPL, whereas organic acids were more preva-
lent in GPL than in normal tissue. To determine major 
metabolic and signaling pathways associated with dif-
ferential metabolites between N, AG, and IM tissues, we 
performed Kyoto Encyclopedia of Genes and Genomes 
enrichment analysis, which identified 18 metabolic path-
ways, encompassing citric acid cycle, pyruvate metabo-
lism, Warburg effects, malate-aspartate shuttle, and 
pyruvaldehyde degradation pathways (Fig. 2G).

The identification of metabolic biomarkers to differentiate 
GPL from normal tissue
As differentiating AG from IM tissue was challeng-
ing, these groups were merged into a GPL group based 
on endoscopic observations. Then, a receiver operating 
characteristic (ROC) curve analysis was conducted on 
the 18 differential metabolites to evaluate their diagnos-
tic accuracy in distinguishing normal from GPL groups. 
Of these metabolites, seven had an area under the curve 
(AUC) value > 0.7, including one with an AUC > 0.8, 
while the remainder ranged from 0.6 to 0.7 (Supplement 
Table  5). We cross-referenced this metabolite informa-
tion and chemical abstracts service (CAS) numbers with 
the Human Metabolome Database and acquired stan-
dards for targeted validation. Ultimately, the following 
five standards successfully generated calibration curves: 
glycerophosphocholine, sphingosine, γ-glutamylglutamic 
acid, tiglylcarnitine, and malate (Fig.  3A-E), and their 
respective AUC values were 0.801 (95% confidence inter-
val (CI): 0.682–0.920), 0.790 (95% CI: 0.669–0.911), 0.733 
(95% CI: 0.592–0.873), 0.719 (95% CI: 0.589–0.849), and 
0.665 (95% CI: 0.513–0.817) (Fig. S1A–E). The combined 
metabolite AUC value was 0.836 (95% CI: 0.714–0.959) 
(Fig. 3F). These results indicate that the combination of 
the five metabolites has the potential to serve as potential 
biomarkers for distinguishing between normal and GPL 
in gastric tissues.

Metabolic biomarker verification in GPL
To validate the effectiveness of these metabolites, includ-
ing glycerophosphocholine, as biomarkers distinguishing 
normal and precancerous gastric tissues, we recruited an 
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additional 71 patients who required endoscopic exami-
nations (Table  1, Cohort 2) for targeted metabolomics 
(Fig.  1A). As shown, from absolute targeted metabolo-
mics quantification results, inter-group metabolite varia-
tion trends, including glycerophosphocholine, generally 
matched the relative quantification trends in pseudotar-
geted metabolomics analysis, indicating that metabolite 
changes at different disease progression stages were con-
sistent (Figs. 3A–E and 4A–E). Metabolite AUC values 
in normal and precancerous gastric tissues are shown: 

glycerophosphocholine (0.903, 95% CI: 0.834–0.972) 
(Fig.  4F), tiglylcarnitine (0.779, 95% CI: 0.688–0.870), 
malate (0.619, 95% CI: 0.512–0.727), sphingosine (0.602, 
95% CI: 0.486–0.718), and γ-glutamylglutamic acid 
(0.643, 95% CI: 0.539–0.746) (Fig. S2A-D), (Supplement 
Table 6). The aggregated metabolite AUC value was 0.916 
(95% CI: 0.851–0.981) (Fig.  4G). These findings dem-
onstrate that glycerophosphocholine, tiglylcarnitine, 
malate, sphingosine, and γ-glutamylglutamic acid pos-
sess the potential to differentiate normal tissues from 

Fig. 1 General workflow of the study. Metabolomics analyses were conducted in two phases involving a total of 97 subjects. Targeted metabolomics 
validation was performed for five metabolites that were significantly associated with gastric disease progression, and functional validation at the cellular 
level was performed for three of these metabolites that help to further differentiate between AG and IM tissue
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Fig. 2 Metabolic profiling in normal (N) differed when compared with atrophic (AG) and intestinal metaplastic (IM) gastric tissues. A. PLS-DA revealed that 
the N and IM stomach tissues were separated into two distinct clusters, while the AG stomach tissue clusters span between the N and IM clusters. B. PLS-
DA Modle results showed a valid model. PLS-DA, partial least-squares discriminant analysis. C–E. OPLS-DA score plot showed metabolomic differences be-
tween N and IM, N and AG, AG and IM. F. Heat map showing differential metabolites among N, AG and IM gastric tissues. G. Metabolite pathway analysis.
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precancerous gastric lesions. The combination of these 

five metabolites effectively distinguishes normal and pre-
cancerous lesion tissues.

Clinically, accurately distinguishing between AG and 
IM stages has always been a challenge; therefore, we per-
formed ROC curve analysis on AG and IM subgroups 
in PGLs. Only malate had an AUC value > 0.7, with an 
AUC of 0.772 (95% CI: 0.671–0.874) (Fig.  4H), while 
AUC values for glycerophosphocholine and tiglylcar-
nitine were 0.690 (95% CI: 0.577–0.803) and 0.697 (95% 
CI: 0.586–0.809), respectively (Fig. S2E-F), (Supplement 
Table  7). By combining absolute targeted quantification 
results, malate, glycerophosphocholine, and tiglylcarni-
tine showed significant differences not only between nor-
mal and IM groups, but also between AG and IM groups, 
suggesting that these metabolites could show potential as 
biomarkers distinguishing AG and IM tissues.

GPL cell model construction
To create a GPL-related GES-1 cell simulation model 
(Fig. 1A), GES-1 cells were exposed to 0, 10, 15, 20, 25, 
30, 35, and 40 µM MNNG concentrations for 24  h to 
examine concentration and treatment duration effects. 
As shown (Fig. 5B), 20 µM MNNG significantly inhibited 

Table 2 Differential metabolite detail parameter table
Description log2(FC) (N/PLGC) P VIP
Isocitrate -2.0918 0.0211 1.8600
2,3-Dioxogulonic acid -2.0540 0.0181 1.8398
(1R,2R)-Isocitric acid -2.0219 0.0350 1.8567
Isocitric acid -1.8509 0.0326 1.8903
N-acetylneuraminate -1.2986 0.0000 3.4123
Glutathione -1.0419 0.0095 1.7107
3’,4’-Dihydroxyacetophenone -0.9588 0.0103 3.0803
γ-Glutamylglutamic acid -0.8728 0.0061 1.2854
Phenylalanylglutamic acid -0.8327 0.0167 2.0829
Malate -0.6988 0.0227 1.3142
L-4-Hydroxyglutamate 
semialdehyde

-0.6341 0.0263 1.6972

Tiglylcarnitine 0.8597 0.0080 1.6176
Glycyl-L-proline 1.0381 0.0350 2.1572
3, 5-Tetradecadiencarnitine 1.2919 0.0002 2.5105
Sphingosine 1.3201 0.0043 2.3824
Ampicillin 1.4728 0.0375 3.0783
Glycerophosphocholine 1.5106 0.0001 3.1889
Gamma-linolenyl carnitine 1.7009 0.0020 1.8637

Fig. 3 The identification of metabolite biomarkers, which discriminated N, AG and IM tissues. A–E. Among 18 metabolites, five were used to establish 
standard curves, from which, three showed higher levels in the normal group, while their relative concentrations decreased with disease progression. The 
other two metabolites showed the opposite trends. F. ROC analysis on the five metabolites combination. ROC, receiver operating curve.
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GES-1 cell proliferation, leading us to select the 15–25 
µM concentration range, qPCR was then used to evalu-
ate MNNG effects (0, 15, 20, 25 µM) on intestinalization 
progression in cells, and after 24 h of 20 µM treatment, 
GES-1 cells exhibited significant increases in CDX2, 
KLF4, and MUC2 expression (Fig.  5C–E). CDX2, KLF4, 
and MUC2 are universal indicators of expression when 
enterocytosis occurs [29]. From analyses, we determined 
that treating GES-1 cells with 20 µM MNNG for 24  h 
optimally induced intestinalization, thereby establishing 
a GPL cell model.

Key metabolite effects on MNNG-induced GPL
To investigate key metabolite roles and effects on GPL 
cell model viability following MNNG treatment, cells 
were starved for 24  h after adherence, pretreated with 
varying metabolite concentrations for 24  h, and then 
exposed to MNNG under optimal conditions. As shown 
(Fig. S3A-C), while metabolites did not significantly 
impact on cell proliferation, cells pretreated with glyc-
erophosphocholine showed slightly decreased viability at 
12.5 µM, as the concentration of glycerophosphocholine 
intervention increased, cell viability gradually returned to 
a level comparable to that of the MNNG modelling group 
alone. Cells pretreated with 62.5 µM malate showed 

some improvements in viability when compared to the 
model group, while cells pretreated with 3.125 µM tiglyl-
carnitine showed slightly increased viability when com-
pared to the model group, despite CCK8 data showing no 
significant differences.

Although CCK8 data showing no significant differ-
ences, we selected altered concentration gradients for 
qPCR analyses to explore potential metabolite involve-
ment in gene-level intestinalization processes. We 
observed that 50 µM glycerophosphocholine and 3.125 
µM tiglylcarnitine significantly reduced CDX2 and KLF4 
expression, while 125 µM malate significantly increased 
CDX2 expression (Fig.  6A–C). Although these metabo-
lites did not induce differential MUC2 expression, as the 
concentration of malic acid increased, the expression of 
the MUC2 gene was observed to increase to a certain 
extent. Conversely, the intervention of tiglylcarnitine was 
found to reduce the rise in MUC2 gene levels to a certain 
extent (Fig. S4A-C). By combining metabolomics with in 
vitro data, our findings suggest that glycerophosphocho-
line and tiglylcarnitine may have the potential to delay 
intestinalization occurrence and progression in vitro, 
while malate may promote its development.

Fig. 4 Metabolite biomarker validation for distinguishing N, AG and IM tissues. A–E. The concentrations of the five metabolites in Cohort 2 were com-
pared. F. ROC analysis of the glycerophosphocholine. G. A ROC combination analysis of the five metabolites. ROC, receiver operating curve. H. ROC curves 
derived from the comparison of malate levels between atrophy and IM groups
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Discussion
Metabolomics, as a relatively mature detection tech-
nology, has shown significant developmental potential 
toward gastric diseases and GC at different stages [13, 
22]. The metabolites discovered using this approach have 
shown broad research prospects and clinical applica-
tions in disease etiology, early diagnosis, and prognosis 
[30, 31]. Metabolomics-based analytical techniques have 
identified distinct and overlapping endogenous biomark-
ers across different gastric disease stages, encompassing 
glucose, amino acid, lipid, and nucleotide metabolism 
pathways. Metabolic alterations have crucial roles in dis-
ease onset and progression. However, in studies examin-
ing gastric diseases and GC at various stages, metabolic 
changes have been reported, but the results often vary 
[22, 23, 32, 33]. Most studies have used easily obtain-
able samples, such as patient blood, urine, etc., which 
reflect systemic metabolic changes. In contrast, in our 
study, we selected gastric tissue samples that more 
directly reflected metabolic changes at lesion sites. Using 
advanced metabolomics techniques, we analyzed the 

precious and limited gastric tissue samples obtained via 
endoscopy and have established our own gastric tissue 
metabolome database, comprising 433 metabolites col-
lected in both positive and negative ion modes.

Using a pseudotargeted metabolomics analysis of the 
discovery cohort, 18 differential metabolites were iden-
tified in both normal and precancerous gastric tissues. 
ROC curve analysis was then used to identify potential 
differential metabolites as biomarkers, selecting those 
with AUC values > 0.7 for validation, and to distinguish 
between normal and precancerous gastric tissue. For this, 
we collected a larger validation cohort for absolute tar-
geted quantification analysis. Ultimately, a combination 
of glycerophosphocholine, tiglylcarnitine, malate, sphin-
gosine, and γ-glutamylglutamic acid potentially acted as 
powerful biomarkers differentiating normal from pre-
cancerous gastric tissue. Moreover, malate, glycerophos-
phocholine, and tiglylcarnitine effectively differentiated 
between AG and IM tissue subgroups, suggesting the 
timely identification and definition of different pathologi-
cal stages in the gastric Correa cascade process.

Fig. 5 The construction of a gastric precancerous lesion cell model. A. The 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) chemical structure. B. MNNG 
concentration effects on GES-1 viability. C–E. MNNG concentration effects on GES-1 intestinal gene expression. Data are represented by the mean ± stan-
dard error of the mean (SEM). *p < 0.05, **p < 0.01 and ***p < 0.01 versus the control. All experiments were performed three times and data were normalized 
to control group data.
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Fig. 6 Pretreatment effects of different metabolite concentrations on IM-related gene (CDX2 and KLF4) expression in a GPL cell model (using GES-1 
cells). Data are represented by the mean ± standard error of the mean (SEM). #p < 0.001, *p < 0.05, and **p < 0.01 versus the control. All experiments were 
performed three times and data were normalized to control group data.
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Glycerophosphocholine can be effectively used to 
treat and prevent multiple biochemical diseases [34–38]. 
Other metabolomic studies have shown that glycero-
phosphocholine levels steadily decrease as GC progresses 
from gastritis to early GC and then onto advanced GC 
[24], consistent with our quantitative glycerophospho-
choline results across different groups. During the pro-
gression from normal gastric tissue to gastric cancer, 
metabolic reprogramming occurs, including alterations 
in lipid metabolism. As a type of phospholipid, GPC 
levels may decrease due to dysregulation in lipid syn-
thesis and degradation. Additionally, the expression lev-
els of phospholipase A2 (PLA2) in gastric cancer tissues 
are significantly higher than in normal gastric mucosal 
tissues, and the elevated activity of PLA2 may lead to 
increased GPC degradation, resulting in reduced GPC 
levels. Malate is involved in multiple metabolic path-
ways and is a key intermediate in many biochemical 
reactions, with important roles in the body. Research 
has shown that downregulating malate dehydrogenase-3 
may advance GC by influencing oxidative stress and sta-
bilizing hypoxia-inducible factor-1α, with malate, a sub-
strate of this enzyme, crucial in GC progression [39]. 
Sphingosine is a type of sphingolipid that helps mediate 
pro-inflammatory events in the gastrointestinal tract via 
sphingolipid signaling [40]. Previous studies have demon-
strated that sphingosine plays a crucial role in apoptosis, 
inflammatory signaling pathways, and lipid metabolism. 
Notably, its metabolite sphingosine-1-phosphate (S1P) 
may have dual effects, either promoting cell survival or 
accelerating carcinogenesis. Furthermore, the S1P-S1P 
receptor axis has been reported to be a key player in 
gastric cancer progression, potentially activating PI3K/
Akt, MAPK, and NF-κB signaling pathways to facilitate 
gastric epithelial cell proliferation, inhibit apoptosis, 
and enhance inflammation. Thus, dysregulated sphin-
gosine metabolism may serve as a critical driver of gas-
tric lesion development. Currently, there is limited 
research on associations between tiglylcarnitine and 
γ-glutamylglutamic acid and the stomach, thus further 
exploration and verification studies are required.

As we directly used clinical gastric tissue micro-sam-
ples, this approach better reflected metabolic changes 
at lesion sites when compared to blood, urine, and saliva 
samples used in previous studies [22–24, 41], maximiz-
ing the use of clinical samples and showing potential for 
translational medicine. We aim to identify potential ben-
eficial metabolites that are abundant in normal tissues 
but significantly reduced in diseased tissues, with the 
goal of exploring the protective effects of supplement-
ing these metabolites on the gastric mucosa. Through 
this approach, we established a gastric tissue metabolic 
database. By integrating metabolomics analysis of clini-
cal endoscopic biopsy samples with measurements of 

glycerophosphocholine, tiglylcarnitine, malate, sphingo-
sine, and γ-glutamylglutamic acid levels, we were able to 
predict the occurrence of gastric precancerous lesions 
to a significant extent. Functional validations of these 
biomarkers were also performed at the cellular level. 
We showed that glycerophosphocholine, malate, and 
tiglylcarnitine did not significantly impact GES-1 cell 
viability under MNNG treatments in our GPL model. 
However, glycerophosphocholine and tiglylcarnitine par-
tially decreased gene expression related to intestinaliza-
tion, while malate showed a tendency to enhance this 
expression.

Our study also has several limitations. First, although 
the study includes both discovery and validation cohorts, 
the overall sample size is relatively limited, and the study 
was conducted at a single center, which may impact the 
statistical power and generalizability of the findings. Sec-
ond, the absence of a longitudinal cohort restricts our 
ability to capture the dynamic evolution of metabolic 
changes. Third, factors such as H. pylori infection, dietary 
habits, and medication use may influence the gastric tis-
sue metabolome, but these variables were not strictly 
controlled in our study. To address the above limitations, 
we plan to expand the sample size in future studies, while 
strictly controlling for confounding factors such as H. 
pylori infection, diet, and medication use, and simultane-
ously conducting a longitudinal cohort study. In addition, 
we plan to adopt a multi-center design in future studies 
to further validate the robustness and clinical applicabil-
ity of our results. We also prepare to collect paired tis-
sue and peripheral biofluid samples (such as blood and 
urine), followed by metabolomics analysis of these sam-
ples, aiming to identify more stable and clinically relevant 
metabolic biomarkers, thereby enabling non-invasive 
screening and risk assessment. Furthermore, we plan to 
integrate machine learning and multi-omics approaches 
to enhance the predictive power of these biomarkers and 
explore their potential role in the early detection of gas-
tric diseases and personalized medicine.

Conclusions
In summary, we have established the metabolic profiles 
of clinical precancerous gastric tissue samples for the 
first time, by focusing on the metabolic changes within 
the lesions themselves. We identified key metabolite 
molecules that can distinguish between normal, AG, 
and IM tissues, which provides new evidence and strat-
egies for clearly defining the precancerous stages and 
offers a potential approach to distinguishing the patho-
logical stages of AG and IM. However, further research 
is needed, including expanding the cohort, assessing the 
consistency of metabolic changes in different matrices, 
and conducting animal experiments to explore mecha-
nisms and clinical applications.
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