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Abstract
Purpose This study is aimed to develop and validate a machine learning model, which combined radiomics and 
clinical characteristics to predicting the definitive chemoradiotherapy (dCRT) treatment response in esophageal 
squamous cell carcinoma (ESCC) patients. Methods: 204 advanced ESCC patients were included who underwent 
dCRT at our hospital. Patients were randomly divided into training cohort and validation cohort with a ratio of 7:3. 
The radiomics features were selected by LASSO algorithm. The clinical features were selected by multivariate logistics 
analysis (p < 0.05). Subsequently, a combined radiomics and clinical model was established and validated to predict 
the treatment response in ESCC patients by logistic regression model. The performance of the model was evaluated 
by receiver operating characteristic (ROC) curve, decision curve analysis (DCA), nomogram, and calibration curve. 
Results: Total of 944 radiomics features were extracted from the pre-treatment contrasted enhanced CT images 
(CECT). After feature selection, 3 radiomics features and 3 clinical features were identified as the most predictive 
variables. The combined model shows better prediction performance among radiomics model or clinical model. The 
radiomics model’s AUC values in training and validation cohort are 0.71,0.69. As for clinical model the AUC values 
were 0.74,0.75 in training and validation cohort. However, the AUC values in combined model are 0.79, 0.78 in training 
cohort and validation cohort, respectively. DCA and calibration curve also demonstrated good performance for the 
combined model. Conclusion: The radiomics combined clinical features model demonstrates superior treatment 
response prediction ability for ESCC patients received dCRT. This model has the potential to assist clinicians in 
identifying non-responsive patients before treatment and guide individualized therapy for advanced ESCC patients.
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Introduction
Esophageal squamous cell carcinoma is the most com-
mon type of esophageal cancer in China [1]. Unfortu-
nately, it is often detected at an advanced stage, leading to 
poor prognosis. The five-year survival rate for advanced 
ESCC is less than 20% [2]. Radiotherapy combined with 
chemotherapy has emerged as one of the primary treat-
ment modalities for ESCC patients who are not eligible 
for surgery or have inoperable tumors. According to 
different physical conditions of patients, the treatment 
modes of chemoradiotherapy mainly contains concur-
rent radiotherapy and chemotherapy after induction(I-
CCRT), concurrent radiotherapy and chemotherapy 
followed by consolidation (CCRT-C), induction and con-
current radiotherapy and chemotherapy after consoli-
dation (I-CCRT-C) and sequential chemotherapy and 
radiotherapy (SCRT) [3, 4]. However, it is important to 
note that not all patients benefit from chemoradiother-
apy due to the heterogeneity of the tumor [5].

At present, the treatment response is evaluated by 
Response Evaluation Criteria in Solid Tumors 1.1 ver-
sion (RECIST 1.1). For the non-surgery advanced ESCC 
patients who received chemoradiotherapy, treatment 
response could be regarded as an early substitution for 
long term outcomes. Therefore, predicting the treatment 
response of patients with esophageal cancer before treat-
ment might be helpful to assist clinicians to adjust the 
treatment plan and prolong the survival of patients.

Radiomics is a non-invasive method that allows for the 
extraction of high-throughput information from medical 
images [6]. This technology has shown promise in char-
acterizing tumor heterogeneity and predicting progno-
sis, making it a potential tool in the field. Studies have 
found that radiomics features, particularly texture fea-
tures, can predict the response of esophageal squamous 
cell carcinoma (ESCC) patients [7–9]. Additionally, a 
nomogram developed by Luo et al. has been validated 
for predicting complete response (CR) status in ESCC 
patients after dCRT [10]. But most of current studies are 
focused on the ESCC patients after dCRT, not involving 
other chemoradiotherapy models, which limits the mod-
els’ generalization ability. To address this limitation, it is 
necessary to develop a machine learning model that com-
bines radiomics and clinical features to predict treatment 
response in ESCC patients undergoing different chemo-
radiotherapy models, such as I-CCRT, CCRT-C, I-CCRT-
C, and SCRT.

Hence in, the objective of this study is to establish a 
comprehensive machine learning model that integrates 
radiomics features and clinical features to accurately 
predict the treatment response of chemoradiotherapy 
ESCC patients. The model will be used to guide clini-
cians’ pre-treatment decision-making, which is expected 

to facilitate the precise individual treatment and improve 
the survival.

Materials and methods
Patients
This study enrolled 246 ESCC patients who treated with 
chemoradiotherapy in our hospital from February 2012 
to December 2018. The inclusion criteria were as follows: 
[1] Age > 18; [2] No history of anti-tumor treatment prior 
to admission; [3] Received chemotherapy in combina-
tion with radiotherapy after admission.; [4] Confirmed 
diagnosis squamous cell carcinoma based on patho-
logical biopsy. The exclusion criteria were as follows: [1] 
Poor quality CT images; [2] Treatment was interrupted 
for other reasons unrelated to the study; [3] Presence of 
primary tumors in other sites; [4] Changed chemoradio-
therapy regimes during treatment. The research protocol 
was approved by the Ethics Committee of Shandong First 
Medical University Affiliated Cancer Hospital accor-
dance with the principles of Declaration of Helsinki. Due 
to the research was a retrospective study, the informed 
consents were waived off.

CT images acquisition and ROI delineation
Philips CT (Phillips Medical Systems, 96 Highland 
Heights, OH) was used to perform the imaging on all 
enrolled ESCC patients at our hospital. The scanning 
parameters were as follows: tube voltage of 120KvP, tube 
current from 53 to 400 mA, a scanning period around 2.8 
and an interval time of 1.8 s. 512 × 512 image matrix and 
a voxel size of 0.9766 mm×0.9766 mm×3 mm was used 
to reconstructed the CT images. The image thickness was 
set at 3  mm. Following the scanning, contrast medium 
was injected using a high-pressure automatic injector at 
a flow rate of 3.0 ml/s.

One oncologist with more than ten years of experi-
ence delineated the Region of Interesting (ROI) on CECT 
images according to the guide of National Comprehen-
sive Cancer Network (NCCN). The ROI referred as the 
gross tumor volume (GTV), which contains the vis-
ible primary tumor (GTVp) and positive lymph nodes 
(GTVnd) detected by CECT. To enhance accuracy, the 
barium esophagogram, endoscopic examination or PET 
imaging were suppled to reference for target delineation. 
After delineation, another senior oncologist reviewed the 
targets. If there were any conflicts, two oncologists dis-
cussed and driven a consensus conclusion.

Clinical variables collection and treatment response 
evaluation
The pre-treatment clinical variables were summarized, 
which mainly including: age, gender, tumor location, 
TNM stage, differentiation, Eastern cooperative oncol-
ogy group performance status (ECOG PS), therapeutic 
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model, radiotherapy technology, radiotherapy dose, che-
motherapy plan, chemotherapy cycles, carcinoembry-
onic antigen (CEA), Cyfra21. Tumor location was divided 
into four parts: cervical, upper thoracic, middle thoracic, 
lower thoracic. These variables were analyzed to assess 
their impact on the treatment response and to develop 
a predictive model for treatment outcomes in ESCC 
patients undergoing chemoradiotherapy.

The treatment response of ESCC patients after CRT 
were evaluated by the RECIST1.1. Two experienced 
oncologists, each with more than 10 years of experience 
in oncology, assessed the treatment response indepen-
dently. All of the patients were stratified into two groups: 
objective response (OR)and non-OR group. In this study, 
ESCC patients who achieved complete remission (CR) 
or partial remission (PR) were regarded as ORs. On the 
other hand, patients who had stable disease (SD) or pro-
gressive disease (PD) were categorized as non-ORs.

Radiomics feature extraction
Radiomics features were extracted from the pre-treat-
ment CT images using Py-Radiomics based on 3D slicer. 
Total of 944 features were extracted, which contain 14 
shape features, 180 first-order features and 750 texture 
features. The voxel sizes of the images were resampled to 
a standardized size of 3 × 3 × 3 mm3 to ensure slice thick-
ness and the bin width was set as 15 [11]. The radiomics 
features were generated from the original, wavelet-fil-
tered, and Laplacian of Gaussian (LoG)-filtered images. 
The Log-kernel size was set as 3 × 3. Texture features were 
consisted by Gray Level Cooccurrence Matrix (GLCM), 
Gray Level Dependence Matrix (GLDM), Gray Level Run 
Length Matrix (GLRLM), Gray Level Size Zone Matrix 
(GLSZM) and Neighborhood Gray-tone Difference 
Matrix (NGTDM).

Feature selection and model Building
The total ESCC patients were randomly divided into 
training cohort and validation cohort as the proportion 
of 7:3. All of the features were normalized by Z-Score. 
According to the training cohort, all extraction radiomics 
features were selected by the Least Absolute Shrink-
age and Selection Operator (LASSO) algorithm, which 
adapted L1 regularization. The LASSO algorithm was 
applied with 10-fold cross-validation based on the train-
ing cohort to determine the optimal set of radiomics fea-
tures that were most predictive of treatment response. 
The search space was: C = [0.01, 0.1, 1, 10, 100]. The iter-
ation time was set as 1000 times. Based on the selected 
radiomics features, a radiomics model with good predic-
tion performance for treatment response was developed 
by logistic regression algorithm. Additionally, clinical 
features were selected by multivariate logistics regres-
sion analysis (p < 0.05). The selected clinical features were 

used to established the clinical model for prediction of 
response.

Finally, the selected radiomics features and clinical 
features were combined to develop a machine learn-
ing model for prediction treatment response in ESCC 
patients. What’s more, the predictive ability of combined 
model was verified in the validation cohort (n = 61). The 
prediction ability of treatment response was evaluated 
by the Receiver Operator Characteristic (ROC) curve. 
The ROC curve provides a graphical representation of 
the sensitivity and specificity of the model at different 
thresholds and can be used to assess the discrimination 
ability of the model. Nomograms and calibration curve 
were built based on the combined model. Calibration 
curves were plotted to evaluate the consistency between 
the nomogram-predicted results and recorded treat-
ment results. The decision curve analysis (DCA) was per-
formed to assess the clinical usefulness of the prediction 
model.

Statistical analysis
Radiomics features was extracted by 3D Slicer (Version 
4.11, https://www.slicer.org/). Statistical analyses and 
model establishment were conducted by R software (Ver-
sion 3.4.0, https://www.r-project.org/). The Kruskal–Wall 
test was performed in SPSS (Version 25.0,  h t t p  s : /  / w w w  . 
i  b m .  c o m  / c n -  z h  / s p s s / ) w as used to analyze the different 
groups. P values less than 0.05 were considered as statis-
tically significant. All statistical tests were two-sided.

Results
Patient characteristics
Our study finally enrolled 204 ESCC patients who 
received dCRT. The patient characteristics details are 
shown in Table  1. There are no significances between 
training cohort and validation cohort.

Features selection and model development
944 radiomics features are extracted by Py-radiomics 
based on pre-treatment CT images. LASSO algorithm is 
used to reduce the redundancy of radiomics features and 
filter the optimal radiomics features in training cohort, as 
shown in the Fig. 1a, b.

Finally, as for radiomics features, original- ngtdm-
Coarseness (ONC), wavelet-HHH- first order-Variance 
(WHFV) and wavelet-LLL-first order-Skewness (WLFS) 
are selected and the details information are displayed in 
the Table S1 (see Additional file 1). As for clinical fea-
tures, ECOG PS, differentiation, and therapy model are 
also be screened to predict treatment response. The three 
clinical features are shown in the Table 2. All of the six 
features have statistically significant between the OR 
group and Non-OR group (Table S2, see Additional file1).

https://www.slicer.org/
https://www.r-project.org/
https://www.ibm.com/cn-zh/spss/)wa
https://www.ibm.com/cn-zh/spss/)wa


Page 4 of 9Yin et al. BMC Gastroenterology          (2025) 25:313 

Table 1 Patient characteristics in training(n = 143) and validation cohorts(n = 61)
Training Cohort Validation Cohort P values

Clinical characteristic
Age (years, median-range) 61 (39 ~ 78) 61 (44 ~ 79) 0.903
Gender (Male/Female) 115/28 48/13 0.778
ECOG PS 0.625
PS = 0 71 28
PS ≥ 1 72 33
Tumor location 0.129
Cervical 16 12
Upper 53 22
Middle 54 22
Lower 20 5
Differentiation 0.482
Well 71 27
Intermediate/ Poorly 72 34
T stage 0.478
T1-T2 16 9
T3-T4 127 52
N stage 0.335
N0 24 7
N+ 119 54
M stage 0.334
M0 111 51
M1 32 10
Therapeutic model 0.139
CCRT-C 33 17
I-CCRT 11 8
I-CCRT-C 26 12
SCRT 73 24
Radiotherapy technology 0.375
3D-CRT 47 24
IMRT 96 37
Radiotherapy dose (Gy) 0.838
< 60 49 20
≥ 60 94 41
Chemotherapy plan 0.991
DP 96 41
PF 47 20
Chemotherapy cycles 0.721
4–5 90 40
6–8 53 21
The hematology test results
CEA (ng/ml) 0.195
< 3.4 119 46
≥ 3.4 24 15
Cyfra21(ng/ml) 0.489
< 3.3 106 48
≥ 3.3 37 13
Treatment response 0.301
OR 100 47
Non-OR 43 14
Continued Table  1. ECOG PS: Eastern cooperative oncology group performance status; 3D-CRT: three-dimensional conformal radiotherapy; IMRT: Intensity 
modulated radiotherapy; DP: cisplatin plus docetaxel; PF: cisplatin plus fluorouracil; OR: Objective response;
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The radiomics model is established based on the three 
radiomics features. The AUC values are 0.71,0.69 in train-
ing cohort and validation cohort, respectively (Fig. 2a and 
b).

Similarly, the clinical model is also established based on 
the three clinical features. The AUC values are 0.74,0.75 
in training cohort and validation cohort, respectively 
(Fig.  2a and b). The radiomics features and clinical fea-
tures are combined to develop the combined model 
for response prediction. The AUC values are 0.79,0.78 
in training cohort and validation cohort, respectively 
(Fig. 2a and b). The Delong test has also been conducted 
between the three models. The results are displayed in 
the Table S3.

The nomogram combines radiomics and clinical fea-
tures for the prediction of treatment response (Fig.  3). 
Nomograms are graphical representations that assign a 
numerical score to each predictor variable and provide 
a visual tool for predicting the probability of an event, 
in this case, treatment response. The calibration curve 
is also plotted to calibrate the model’s performance, as 
shown in the Fig.  4. Furthermore, the Decision Curve 
Analysis (DCA) curve is also plotted to validate our mod-
el’s capability in the Fig. 5.

Discussion
Chemoradiotherapy plays an important role for the 
advanced ESCC patients’ treatment. However, due to 
the heterogeneity of tumors, not all of the patients will 
be benefit from chemoradiotherapy [12]. Several studies 
have explored the application of radiomics in predicting 
treatment response in ESCC patients [10, 13, 14]. For 
instance, Luo et al. [10] developed a nomogram for pre-
dicting the treatment response of patents. However, they 
only focused on the complete remission not including 
partial remission. Wang et al. [13] developed a machine 
learning model that incorporated clinical and radiomics 
features to predict pathological complete response. But 
the standard of pathological complete remission is diag-
nosed by invasive biopsy. So, our study establishes and 
validates a machine learning model for predicting the 
treatment response of advanced ESCC patients, which 
is aimed to help the clinician to identify the insensitive 
patients for chemoradiotherapy based on pre-treatment 
information.

Total of six radiomics and clinical features are selected 
to build the model. As for the clinical features, ECOG PS, 
differentiation and therapeutic model are chosen to pre-
dict OR. ECOG PS is a measure of a patient’s functional 

Table 2 Clinical features selected by multivariate analysis 
(n = 143)

Coefficient Z values P values
Clinical characteristic
Age -0.0214 -0.86 0.391
Gender 0.313 0.650 0.515
ECOG PS -0.8653 -2.29 0.022
Tumor location -0.202 -0.950 0.340
Differentiation -0.865 -2.290 0.022
T stage -1.205 -1.550 0.122
N stage -0.303 -0.590 0.554
M stage -0.614 -1.470 0.143
Therapeutic model -0.585 -3.130 0.002
Radiotherapy technology -0.020 -0.050 0.959
Radiotherapy dose 0.614 1.630 0.103
Chemotherapy plan -0.130 -0.340 0.737
Chemotherapy cycles -0.009 -0.020 0.981
Hematology test
CEA 0.303 0.590 0.554
Cyfra21 -0.150 -0.360 0.716
ECOG PS: Eastern cooperative oncology group performance status;

Fig. 1 Selected the radiomics features associated treatment response
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Fig. 3 The nomogram model for treatment response prediction. PS: 0 represents ECOG PS 0 grade, 1represents ECOG PS 1 and 2 grade; Therapeutic 
model: 1 represents I-CCRT, 2 represents CCRT-C, 3 represent I-CCRT-C,4 represents SCRT. ONC: original- ngtdm-Coarseness; WHFV: wavelet-HHH- first 
order-Variance; WLFS: wavelet-LLL- first order- Skewness

 

Fig. 2 The ROC curves of prediction model. a: ROC curve in training cohort; b: ROC curve in validation cohort. AUC: Area under the curve
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Fig. 5 Decision curve analysis for nomogram model

 

Fig. 4 The calibration curve in training cohort (Fig. 4a) and validation cohort (Fig. 4b)
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status and is determined by oncologists based on the 
patient’s performance. This feature provides valuable 
information about the patient’s overall health and abil-
ity to tolerate treatment. Differentiation, as suggested 
by Liu et al. [15], is a significant risk predictor of early 
recurrence for ESCC patients. In our study, we divided 
the pathological grade into two groups: well differen-
tiation and intermediate/poorly differentiation, aligning 
with previous research findings. The therapeutic model, 
as highlighted by Gong et al. [16], has been identified 
as a prognostic factor for ESCC patients. Similarly, we 
considered the therapeutic model as a vital factor in our 
predictive model. This feature captures whether con-
current chemoradiotherapy was performed, which has 
implications for treatment outcomes. TNM stage was 
not included in our model building. This decision was 
based on the belief that ECOG PS, differentiation, and 
therapeutic model may play a more critical role in our 
specific research context [17]. Nonetheless, the exclu-
sion of TNM stage does not diminish its importance in 
ESCC prognosis and overall patient management. All in 
all, the clinical information provides a reference for the 
decision marking of clinicians by the nomogram model 
before treatment.

ONC is the short name of original–Coarseness, which 
means a measure of average difference between the cen-
ter voxel and its neighborhood in the original images 
[18]. This feature provides information about the spatial 
rate of change and a higher value indicates a lower spatial 
change rate and a locally more uniform texture. Song et 
al. [19] also approved ngtdm-Coarseness have the poten-
tial to predict the treatment outcomes based on pretreat-
ment images. WHFV is defined as wavelet-HHH-first 
order-Variance, which is derived from first order features 
variance based on wavelet-filter transformed images. The 
variance represents the degree of difference in pixel gray-
scale values of images [20]. The short name of wavelet-
LLL- first order- Skewness is WLFS, which reflects the 
degree of asymmetry of the pixel gray value relative to 
the mean distribution in the wavelet-filter transformed 
images [21].Those three radiomics features contains two 
first order features and one texture features, which dem-
onstrates the high-dimensional tumor characteristics of 
ESCC.

Actually, some researchers have made efforts for pre-
dicting the clinical treatment response by the non-inva-
sive biomarker with ESCC patients [17, 22–25]. However, 
several critical challenges remain unresolved in current 
research. Jayaprakasam et al. [17] first used radiomics 
model to predict the PET responders to induction che-
motherapy patients. However, their study had a relatively 
sample size of 74 patients, and the accuracy of their com-
bined PET/CT model was only 70% in the test cohort. Li 
et al. [22] established an outperformance deep learning 

model for the clinical treatment response prediction 
of ESCC. But the working mechanism of deep learning 
algorithm is still like a black box, which limits interpret-
ability of the model. Jin et al. [23] constructed a machine 
learning that combined radiomics features and dosimet-
ric parameters to predict the response, but the model’s 
AUC was 0.708 and 0.689 in the training and test set, 
respectively. Although Liu et al. [24] established a model 
for the treatment response successfully, their study only 
enrolled radiotherapy patients. An et al. [25] predicted 
treatment response in CCRT (concurrent chemoradio-
therapy) patients using delta radiomics based on ADC 
(Apparent Diffusion Coefficient) maps. Notably, their 
investigation was conducted using MR images. Our 
study recruited 204 ESCC patients, who was treated with 
four different therapeutic models. And the pretreatment 
information, such as patients’ characteristics, the hema-
tology test results and treatment details, were thoroughly 
collected in our clinical variables. Therefore, our machine 
learning combined model has excellent interpretability, 
predictive performance, and generalization ability.

There are still some limitations in our study. Firstly, 
although the ROC curves, DCA and calibration curves 
showed good performance, it would be better if vali-
dated by an external validation group from another cen-
ter. Then, our investigation only combines the radiomics 
and clinical features in the machine learning model. In 
the future, radiomics integrating pathomics, dosiomics, 
genomics and proteomics might improve the model’s 
accuracy and bio- interpretability.

Conclusion
In a word, a noninvasive, comprehensive, interpretable 
and individualized chemoradiotherapy efficacy predic-
tion model was established by pretreatment information 
of advanced ESCC patients based on machine learning 
algorithm. This model integrates radiomics features and 
clinical variables with good predictive accuracy, pro-
viding an efficient, convenient, and affordable method 
to guide the clinicians’ treatment decision for ESCC 
patients.
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