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Abstract 

Background The mortality burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is rising, mak-
ing it crucial to predict mortality and identify the factors influencing it. While advanced machine learning algorithms 
are gaining recognition as effective tools for clinical prediction, their ability to predict all-cause mortality of MAFLD 
individuals remains uncertain. This study aimed to develop different machine learning models to predict all-cause 
mortality of MAFLD individuals, compare the predictive performance of these models, and identify the risk factors 
contributing all-cause mortality, which is crucial for management of MAFLD individuals.

Methods We included 3921 MAFLD individuals in NHANES III. After a median follow-up time of 310 months, 1815 
(46.3%) deaths were recorded. The data (demographic, behavioral factors and laboratory indicators) were utilized 
to construct machine learning models (Coxnet, RSF, GBS) after feature selection. Time-dependent AUC, time-depend-
ent brier and C-index were then evaluated the performance of models. We identified the top five factors that con-
tributed significantly to all-cause mortality and further explore the association with all-cause mortality using RCS 
and Kaplan–Meier survival curves.

Results Coxnet showed the best performance in short-term and long-term predictions with time-dependent AUC 
of 0.82 at 5 years and 0.88 at 25 years. Age, FORNS, waist circumstance, AAR, FLI were associated positively with all-
cause mortality. Compared to the individuals who smoked more than 100 cigarettes, those below 100 had better 
survival outcome (P < 0.0001).

Conclusions Machine learning has a promising application in predicting all-cause mortality in MAFLD individuals. 
Combined the results of interpretable machine learning and association analyses, we found risk factors which con-
tributing to the all-cause mortality. These findings provide insights for community health practitioners to intervene 
in modifiable risk factors, thereby improving the survival and quality of life of MAFLD individuals.
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Introduction
Metabolic dysfunction-associated fatty liver disease 
(MAFLD) is the most common cause of chronic liver dis-
ease, with a global prevalence reaching up to 25%. [1]. In 
2020, an international panel expert consensus panel rec-
ommended renaming non-alcoholic fatty liver disease 
(NAFLD) to MAFLD [2], compared to NAFLD, to better 
reflect this highly prevalent liver disease affected by met-
abolic pathophysiology and cardiometabolic implications 
than the original NAFLD [3], and also acknowledged the 
heterogeneity of fatty liver disease, facilitating more pre-
cise phenotyping and supporting individualized manage-
ment strategies in clinical practice [4].

MAFLD is often associated with other metabolic disor-
ders such as obesity and type 2 diabetes mellitus (T2DM), 
and may be accompanied by other metabolic risk factors 
such as hyperglycemia and hypertension, which are det-
rimental to the progression of the disease and often lead 
to an increase in the mortality rate associated with the 
disease [5]. MAFLD exacerbates the burden of all-cause 
mortality. Studies conducted in the U.S. have found that 
individuals with MAFLD have a 17% higher risk of all-
cause mortality compared to those without fatty liver dis-
ease [6, 7]. Additionally, on a global scale, the mortality 
burden of MAFLD has been rising, with mortality rates 
showing an upward trend from 1990 to 2021 [8].

Previous studies have explored the relationship 
between modifiable behavioral factors, metabolic pheno-
types, and all-cause mortality in patients with MAFLD, 
[9–12] as well as other mortality-specific relationships, 
including cardiovascular disease (CVD) and malignant 
tumors. These studies identified risk factors contributing 
to all-cause mortality in MAFLD individuals, including 
age, sex, married status, alcohol consumption, smok-
ing, body mass index (BMI), FIB-4, and others [13, 14]. 
However, few studies have explored the predictive value 
of these demographic information, modifiable behavioral 
factors and laboratory indicators for all-cause mortality 
in patients with MAFLD.

Advanced machine learning algorithms have been 
widely used in medicine, and unlike traditional statisti-
cal methods, they can effectively eliminate confounding 
factors and improve predictive accuracy, assisting health-
care professionals in identifying high-risk patients and 
increasing the accuracy of predictions of diseases and 
their adverse outcomes [15–17]. And it also shows pow-
erful performance in predicting mortality in clinical sce-
narios. [18–20] Recent years, studies have used machine 
learning methods to construct models for identifying 
populations at high risk of developing MAFLD models, 
[21, 22] as well as predicting its progression [23, 24].

To the best of our knowledge, few studies have used 
advanced machine learning models to predict all-cause 

mortality in individuals with MAFLD. Among the avail-
able research, there is a lack of comprehensive demo-
graphic information and clinical laboratory biomarkers, 
as well as limited diversity in predictive model construc-
tion approaches [25, 26].

Given the current inability to identify a treatment for 
MAFLD, it is crucial to predict mortality and identify the 
factors that influence it. In this study, we utilized large 
prospective cohort database with potential risk factors 
to construct a machine learning model for predicting all-
cause mortality in MAFLD individuals, comparing multi-
ple machine learning methods to determine the optimal 
approach. Additionally, we introduced some new indices, 
such as triglyceride (TG) and obesity-related indices, and 
the non-invasive test of fatty liver indices as predictive 
variables. By predicting all-cause mortality risk and iden-
tifying risk factors, healthcare providers can intervene 
timely for MAFLD individuals.

Method
Study population
Data used in this were derived from the third National 
Health and Nutrition Examination Survey (NHANES III). 
NHANES-III is a multistage stratified survey conducted 
from 1988–1994, gathering representative health-related 
data on repetitive noninstitutionalized US population 
through household interview and medical examination. 
Further information about NHANES III database can 
be found on the website (https:// www. cdc. gov/ nchs/ 
nhanes/).

Participants
Study was carried out in individuals above 20 years old. 
We excluded individuals without gall bladder ultrasound 
video images and hepatic steatosis assessments. We 
included the MAFLD population based on diagnosis cri-
teria. This analysis included follow-up data collected up 
to December 31, 2019. Those individuals without follow-
up information were not included in the current study.

Diagnosis criteria and Definitions
MAFLD
The diagnosis criteria of metabolic associated fatty liver 
disease (MAFLD) is based on ultrasound images and 
blood biomarker evidence of hepatic steatosis in addi-
tion to one of the following three criteria, including 
overweight/obesity, T2DM, or presence of at least 2 risk 
factors of metabolic dysregulation, which was defined in 
following conditions: (a) Waist circumference ≥ 102 cm 
in men and 88 cm in women. (b) Blood pressure ≥ 130/85 
mmHg or specific drug treatment. (c) TG ≥ 1.70 mmol/L 
or specific drug treatment. (d) high density lipoprotein 
cholesterol (HDL-C) < 1.0 mmol/L for male and < 1.3 

https://www.cdc.gov/nchs/nhanes/
https://www.cdc.gov/nchs/nhanes/
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mmol/L for female. (e) Prediabetes (i.e. fasting blood 
glucose (FBG) levels 5.6 to 6.9 mmol/L, or 2-h post-load 
glucose levels 7.8–11.0 mmol/L or HbA1c 5.7% to 6.4%). 
(f ) Homeostasis model assessment-insulin resistance 
(HOMA-IR) score ≥ 2.5. (g) C-reactive protein (CRP) 
level > 2 mg/L.

Outcome
The survival data were obtained from the NCHS (https:// 
www. cdc. gov/ nchs/ data- linka ge/ morta lity. htm). The 
all-cause mortality was defined according to the ICD-10 
classification system.

Predictors
The covariates analyzed in this study include 11 variables 
based on questionnaire, including 6 demographic vari-
ables (sex, age, ethnicity, education level, married status, 
family income-poverty ratio level),3 variables related 
of self-report disease history (heart disease, hyperten-
sion, diabetes) and 2 variables of behavioral informa-
tion (smoking status and alcoholic consumption). Grade 
of hepatic steatosis, height, weight, waist circumstance, 
BMI, FBG, glycosylated hemoglobin (GHb), TG, HDL, 
Glutamyl transpeptidase (GGT), Alanine aminotrans-
ferase (ALT), Alanine aspartatetransaminase (AST), 
platelet counts, total cholesterol, albumin, white blood 
cell count (WBC), Hematocrit (HCT), total bilirubin 
were obtained from examination-based information. We 
further calculated 5 indices refer to the non-invasive test 
of fatty liver, including FLI, FIB-4, FORNS, APRI, AAR, 
m_APRI, AARPRI, 8 triglyceride glucose − related and 
obesity indices, including LAP, ABSI, BRI, VAI, TyG, 
TyGBMI, TyGWC, TyGWhtR, and HOMA-IR. These 
additional calculated indices can be found in the Sup-
plementary material (Table S1, see Additional file 1). The 
distribution of continuous predictors was shown in Fig-
ure S1 (see Additional file 1).

Statistical analysis
We checked the missing rate of all features. Variables 
with more than 30% missing data were excluded, and 
MICE was applied to fill missing data for the remaining 
variables. The dataset was divided into training and test 
sets in an 8:2 ratio, with stratification by mortality status. 
Continuous variables were described as mean ± stand-
ard deviation and compared using Student’s t-test, or 
described as median (Q25, Q75) and compared using 
Mann–Whitney tests, according to the distribution. Cat-
egorical variables were described as percentages (%) and 
compared using the chi-square test. P < 0.05 was consid-
ered statistically significant.

All continuous variables were standardized using 
z-scores. For feature selection, we conducted Cox 

proportional hazards regression to identify potential pre-
dictors. This was followed by elastic Net-regularized Cox 
proportional hazards model (Coxnet), with the optimal 
model parameters selected based on the C-index using 
tenfold cross-validation on the training set. Finally, Step-
wise regression Cox proportional hazards regression was 
employed to identify the features feeding into modelling.

In this study, we employed 3 common machine learn-
ing algorithms including Coxnet, Random Survival Forest 
(RSF), Gradient Boosted Survival (GBS). In the Coxnet 
model, 10-fold cross-validation was used to determine 
the optimal parameter based on the C-index. For RSF 
and GBS models, we used grid search for parameter opti-
mization in the training set. A 1000-time bootstrap was 
applied in the test set to compute confidence intervals 
of evaluation indicators at various time points (5, 10, 15, 
20, and 25 years), including time-dependent AUC, time-
dependent Brier score, and the C-index, which we use to 
evaluate the prediction models.

An explainable AI technique, the Sharpley Additive 
explanation (SHAP) was applied to explain the model, 
allowing for the ranking of feature importance. Addition-
ally, Restricted Cubic Splines (RCS), and the Kaplan–
Meier survival curves and Log-rank test were utilized to 
analyze the relationship between the top five ranked vari-
ables and all-cause mortality in MAFLD patients.

Data processing and model construction were per-
formed using RStudio 2023.12.0. Model interpretation 
with SHAP was conducted using Python 3.12.4.

Results
Baseline characteristics
The flow chart of inclusion and exclusion of patients and 
the modeling process was shown in Fig. 1. A total of 3921 
patients with MAFLD met inclusion criteria. The mean 
age was 48.60 years (± 15.07), 49.50% were males. Dur-
ing 1045,639 person-months of follow-up (median fol-
low-up, 310.00 months), 1815 all-cause deaths occurred. 
The characteristics of patients of the training and test set 
were shown in Table 1. We compared the data from the 
training and test sets and found no significant differences 
in their distributions.

Model development
The feature select results for predicting all-cause mor-
tality were shown in Table  S2, Figure S2 and Table  S3 
(see Additional file  1). 22 significant features were then 
used for model construction, as a result of feature selec-
tion. The performance of 3 models at different follow-up 
times for predicting all-cause mortality in the test set was 
shown in Table  2. Details of the model parameters are 
summarized in Table S4 (see Additional file 1).

https://www.cdc.gov/nchs/data-linkage/mortality.htm
https://www.cdc.gov/nchs/data-linkage/mortality.htm
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For all-cause mortality, the GBS model consistently 
showed high time-dependent AUC across all follow-
up periods, with 0.86 (95% CI: 0.79–0.92) at 5  years, 
0.89 (95% CI: 0.85–0.92) at 10 years, and 0.92 (95% CI: 
0.90–0.94) at 25 years. However, despite its strong AUC 
performance, the GBS model had relatively low C-index 
values, ranging from 0.62 (95% CI: 0.51–0.73) at 5 years 
to 0.68 (95% CI: 0.64–0.71) at 25 years, indicating less 
consistency in its performance. For short-term follow-
up, the RSF model demonstrated better consistency with 

a time-dependent AUC of 0.83 (95% CI: 0.75–0.89) at 
5  years and a C-index of 0.82 (95% CI: 0.74–0.89), sug-
gesting good predictive performance in the early stages. 
Meanwhile, the Coxnet model also performed well in 
early follow-up, with a time-dependent AUC of 0.82 (95% 
CI: 0.73–0.88) and a C-index of 0.81 (95% CI: 0.73–0.88) 
at 5 years.

Over the long-term follow-up, the Coxnet model had 
the best discrimination with highest time-dependent 
AUC of 0.88 (95% CI: 0.85–0.90) at 25 years and also a 

Fig. 1 The flowchart of this study
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Table 1 Baseline Characteristics and follow-up data in this study cohort

Variables Total
(n = 3921)

Train set
(n = 3137)

Test set
(n = 784)

P value

Age 48.6 ± 15.07 48.59 ± 15.09 48.68 ± 15.03 0.899

Sex 0.250

 Male 1941 (49.50%) 1538 (49.0%) 403 (51.4%)

 Female 1980 (50.50%) 1599 (51.0%) 381 (48.6%)

Education 0.754

 Illiterate 144 (3.70%) 112 (3.57%) 32(4.08%)

 Below high school 1019(26.0%) 807 (25.7%) 212 (27.0%)

 High school 1848 (47.1%) 1488 (47.4%) 360 (45.9%)

 Above high school 910 (23.2%) 730 (23.3%) 180 (23.0%)

ethnicity 0.586

 non-Hispanic White 2812(71.70%) 2259(72.0%) 553 (70.5%)

 non-Hispanic Black 941 (24.00%) 748 (23.8%) 193 (24.6%)

 Other 168 (4.30%) 130 (4.14%) 38 (4.85%)

Married status 0.407

 Married (spouse in household) 2684 (68.50%) 2142 (68.3%) 542 (69.1%)

 Married (spouse not in household) 318 (8.10%) 244 (7.78%) 74 (9.44%)

 Living as married 333 (8.50%) 274 (8.73%) 59 (7.53%)

 Widowed 162 (4.10%) 132 (4.21%) 30 (3.83%)

 Divorced 424 (10.80%) 345 (11.0%) 79 (10.1%)

Family income–poverty ratio 0.640

 < 1.3 1470(37.40%) 1172 (37.36%) 298 (38.01%)

 1.3–3.5 1670(42.59%%) 1347 (42.94%) 323 (41.20%)

 > 3.5 781(19.91%) 618 (19.70%) 163 (20.79%)

BMI 0.849

 > = 25 3466 (88.40%) 2775 (88.46%) 691 (88.14%)

 < 25 455 (11.60%) 362 (11.54%) 93 (11.86%)

Waist 94.00 [102.00,111.00] 102.00 [94.00,111.90] 101.85 [93.78,111.70] 0.875

Weight 82.80 [72.15,95.80] 82.90[72.10,95.80] 82.35[72.79,95.83] 0.986

Height 166.00 [158.90,173.40] 165.90[158.90,173.40] 166.40[158.30,173.53] 0.732

Hypertension 0.387

 Yes 1540 (39.30%) 1221 (38.9%) 319 (40.7%)

 No 2381 (60.70%) 1916 (61.1%) 465 (59.3%)

Number of cigarettes smoked > 100 0.522

 Yes 2048 (52.20%) 1630 (52.0%) 418 (53.3%)

 No 1873(47.80%) 1507 (48.0%) 366 (46.7%)

Alcohol consumption 1.415[1.201,2.110] 1.415 [1.201,2.110] 1.415[1.201,2.110] 0.568

Diabetes status 0.966

 Normal 1104(28.20%) 1300 (41.4%) 321 (40.9%)

 Prediabetes 1196(30.50%) 956 (30.5%) 240 (30.6%)

 Diabetes 1621 (41.3%) 881 (28.1%) 223 (28.4%)

Reported heart disease 0.846

 Yes 208 (5.30%) 168 (5.36%) 40 (5.10%)

 No 3713(94.70%) 2969 (94.6%) 744 (94.9%)

Grade of hepatic steatosis 0.594

 Normal/mild 1284(32.75%) 1039 (33.12082%) 245 (31.25000%)

 Moderate 1747(44.55%) 1392 (44.37361%) 355 (45.28061%)

 Sever 890(22.70%) 706 (22.50558%) 184 (23.46939%)

LAP 71.11[44.79,113.16] 71.21[44.88;113.82] 70.59[44.22;109.48] 0.827

ABSI 0.082[0.079,0.085] 0.082 [0.079,0.085] 0.082[0.079,0.085] 0.661
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Table 1 (continued)

Variables Total
(n = 3921)

Train set
(n = 3137)

Test set
(n = 784)

P value

BRI 5.682[4.617,7.075] 5.704[4.628,7.060] 5.622[4.569,7.121] 0.904

CI 0.079[0.075,0.084] 0.079[0.075,0.084] 0.079[0.075,0.084] 0.890

VAI 2.515[1.536,4.173] 2.537[1.543,4.179] 2.450[1.476,4.121] 0.326

FLI 76.49[53.39,91.68] 76.64 [53.27,91.81] 76.15 [53.66,91.44] 0.920

FIB-4 0.874[0.593,1.278] 0.871[0.591,1.269] 0.878[0.598;1.313] 0.521

FORNS 6.29[5.01,6.29] 6.33 [5.07,7.49] 6.28 [5.00,7.36] 0.323

APRI 0.328[0.252,0.441] 0.327[0.252,0.439] 0.334 [0.255,0.449] 0.336

m_APRI 2.323[1.545,3.400] 2.302[1.5384,3.351] 2.393[1.563,3.590] 0.181

AARPRI 0.643[0.472,0.873] 0.639 [0.471;0.873] 0.655 [0.481,0.872] 0.588

AAR 1.17[0.90,1.50] 1.17 [0.91,1.50] 1.17 [0.90,1.47] 0.402

glycosylated hemoglobin (GHb) 5.50[5.10,6.00] 5.50 [5.10,6.00] 5.50 [5.10,6.00] 0.736

Serum triglyceride 1.74[1.19,2.61] 1.75 [1.19,2.61] 1.71 [1.16,2.52] 0.565

Glutamyl transpeptidase (GGT) 29.00[19.00,45.00] 29.00 [19.00,45.00] 29.00 [19.00,46.00] 0.893

Alanine aminotransferase (ALT) 18.00[13.00,27.00] 18.00 [13.00,27.00] 18.00 [13.00,27.00] 0.166

Aspartate transaminase (AST) 21.0[17.00,27.00] 21.00 [17.00,27.00] 21.00 [17.00,27.00] 0.213

High-Density Lipoprotein Cholesterol (HDL-C) 1.14[0.93,1.34] 1.11[0.93,1.34] 1.14[0.96,1.37] 0.370

Platelet counts 271.50[229.50,321.00] 272.00[229.50,322.00] 270.00[228.38,314.63] 0.141

White blood cell 7.20[5.95,9.65] 7.15 [6.00,8.60] 7.20[5.95,8.80] 0.370

Hematocrit 0.422[0.391,0.449] 0.422 [0.391,0.448] 0.422 [0.392,0.451] 0.440

Total Bilirubin 8.55[6.84,11.97] 8.55[6.84,11.97] 8.55[6.84,11.97] 0.345

Total cholesterol 5.46[4.76,6.21] 5.46[4.76,6.21] 5.46 [4.71;6.18] 0.726

Albumin 4.10[3.90,4.30] 4.10 [3.90,4.30] 4.10 [3.90,4.40] 0.975

Time (months) 310[206,336] 310 [207,335] 310 [206,337] 0.881

Death 1815(46.30%) 1452 (46.30%) 363 (46.29%) 1.000

Continuous variables were presented as mean (standard deviation) or median [interquartile range]. Categorical variables were presented as n (%). the P value was 
calculated by the chi-square test and Wilcoxon rank sum test

Table 2 Performance of the models for predicting all-cause mortality in the test set

Models Time-dependent AUC Time-dependent brier C-index

Coxnet

 Time = 5 years 0.82(0.73,0.88) 0.04(0.03,0.05) 0.81(0.73,0.88)

 Time = 10 years 0.84(0.79,0.88) 0.08(0.07,0.09) 0.82(0.77,0.87)

 Time = 15 years 0.86(0.83,0.89) 0.11(0.10,0.12) 0.83(0.80,0.86)

 Time = 20 years 0.87(0.84,0.90) 0.12(0.11,0.14) 0.82(0.80,0.85)

 Time = 25 years 0.88(0.85,0.90) 0.13(0.12,0.15) 0.82(0.80,0.84)

Random survival forest(RSF)

 Time = 5 years 0.83(0.75,0.89) 0.04(0.03,0.05) 0.82(0.74,0.89)

 Time = 10 years 0.85(0.81,0.89) 0.08(0.07,0.10) 0.83(0.79,0.87)

 Time = 15 years 0.86(0.83,0.89) 0.11(0.10,0.13) 0.83(0.79,0.86)

 Time = 20 years 0.87(0.88,0.90) 0.13(0.12,0.14) 0.83(0.80,0.85)

 Time = 25 years 0.87(0.85,0.90) 0.14(0.13,0.15) 0.82(0.79,0.84)

Gradient Boosted Survival (GBM)

 Time = 5 years 0.86(0.79,0.92) 0.04(0.03,0.05) 0.63(0.52,0.74)

 Time = 10 years 0.89(0.85,0.92) 0.07(0.06,0.08) 0.57(0.50,0.64)

 Time = 15 years 0.90(0.87,0.93) 0.09(0.08,0.11) 0.61(0.55,0.66)

 Time = 20 years 0.91(0.89,0.93) 0.11(0.09,0.12) 0.65(0.60,0.69)

 Time = 25 years 0.92(0.90,0.94) 0.11(0.10,0.12) 0.68(0.64,0.71)
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high C-index of 0.82 (95% CI: 0.79–0.84). Meanwhile, 
the time-dependent Brier score of Coxnet remained low 
throughout the follow-up period, indicating good cali-
bration, as shown in Fig. 2(c).

The time-dependent ROC curves of models for predict-
ing all-cause mortality in test set were shown in Fig. 3.

Model interpretation
We observed that predictions weighted the most impor-
tant features regarding the decision of Coxnet (Fig.  4). 
Age, FORNS, waist, number of cigarettes smoked > 100, 
AAR, FLI were the top 5 important features. Meanwhile, 
the RCS for the top four important continuous vari-
ables were shown in Fig.  5. Notably, we observe that as 
they increase, they were accompanied by an increase in 
the all-cause mortality. The risk of all-cause mortality 
was significantly increased when age > 48 years, FORNS 
> 6.16, waist circumstance > 96.33 cm, or AAR > 1.18. 
The Kaplan–Meier survival curves (Fig.  6) showed that 
individuals who smoked fewer than 100 cigarettes had a 
consistently lower hazard rate throughout the follow-up 
period, indicating better survival outcomes compared to 
those who smoked more than 100 cigarettes. The differ-
ence between the two groups was significant, with a log-
rank test result of p < 0.0001.

Discussion
In this study, we developed advanced machine learn-
ing models for predicting all-cause mortality in MAFLD 
patients using data from the third  National Health and 
Nutrition Examination Survey (NHANES III), and the 
three models trained (Coxnet, GBS, RSF) were evaluated 
and compared in an internal test set to confirm the pre-
dictive ability of the models as well as the reliability of the 
results. We additionally interpreted the prediction results 
of the optimal model using the SHAP method to visual-
ize the impact of potential features on all-cause mortality 
in MAFLD individuals to increase the interpretability of 
the model at the global level. Overall, the Coxnet model 
demonstrated excellent predictive power in both predict-
ing short-term and long-term mortality. We also found 
that in addition to age, FORNS, waist circumstance, 
AAR, and smoked cigarettes were the largest contribu-
tors to all-cause mortality.

To the best of our knowledge, this is the first study to 
use machine learning to predict all-cause mortality in 
MAFLD individuals, and most of the past studies aimed 
to explore the association between clinical characteris-
tics and all-cause mortality in MAFLD, and to explore 
the value of the corresponding metrics in predicting the 
prognosis of survival in MAFLD. Although previous 
studies have used traditional machine learning mod-
els (e.g., Cox) to predict adverse outcomes of NAFLD 

individuals, such as all-cause mortality and hepatocellu-
lar carcinoma [27, 28], we believe it is necessary to inves-
tigate MAFLD separately due to the differences in clinical 
definitions between NAFLD and MAFLD. Past studies 
have identified the value of triglyceride- and glucose-
related [29, 30] (TyG, TyG-WHtR, TyG-BMI, TyG-WC), 
non-invasive liver test [31] (FLI, FIB-4), and waist cir-
cumference [32] in predicting survival in fatty liver indi-
viduals, so in this study we also included these potential 
variables, and additionally we introduced other relevant 
novel indices with the aim of identifying more risk vari-
ables with machine learning and increasing the predictive 
efficacy of the model.

Previous studies have demonstrated the strong poten-
tial of machine learning technology in predicting all-
cause mortality. Nascimento et  al. utilized machine 
learning techniques to predict mortality caused by res-
piratory diseases, circulatory diseases, cancer, and other 
specific diseases [33]. Similarly, Tran et  al. employed 
Bayesian networks to forecast two-year all-cause mor-
tality in patients with chronic kidney diseases [34], Tan 
et al. developed an all-cause mortality prediction model 
for disabled and elderly populations using deep learning 
neural networks [35]. These studies collectively empha-
sized the capability of machine learning algorithms in 
accurately predicting both all-cause and disease-specific 
mortality rates. In the risk management of metabolic 
dysfunction-associated fatty liver disease (MAFLD), 
machine learning (ML) techniques also have demon-
strated remarkable potential [36]. Deng et al. developed 
a risk identification model for high-risk MAFLD popula-
tions based on large-scale health examination data, which 
enables community health managers to perform prelimi-
nary screening and timely management of MAFLD more 
efficiently and cost-effectively in large populations [21]. 
Similarly, Cheung et al. applied ML methods to construct 
a fibrosis score for MAFLD patients, which significantly 
outperformed traditional non-invasive index in identify-
ing advanced liver fibrosis [24]. Our study may contrib-
ute to identifying individuals with MAFLD at high risk of 
early adverse outcomes, thereby assisting healthcare pro-
viders in initiating timely interventions.

Faced with complex datasets, we employed feature 
selection prior to model training to reduce model com-
plexity and mitigate the risk of overfitting. We utilized 
a sequential approach incorporating the filter method 
(Cox regression), embedded methods with penalized 
Cox models (Coxnet), and wrapper methods (multivari-
able Cox stepwise selection), which represent commonly 
used strategies for feature selection [25]. While the tradi-
tional Cox proportional hazards model is widely used for 
mortality prediction, it may struggle with high-dimen-
sional data. To address these limitations, we incorporated 
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Fig. 2 Performance of different models predicting all-cause mortality of MAFLD. a Time-dependent AUC (b) C-index (c) Time-dependent brier. 
Abbreviations: COXNET, net-regularized cox proportional hazards model; GBS, gradient boosted
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Fig. 3 Time-dependent AUROC of different models for predicting all-cause mortality (a)Coxnet, b Random Survival Forest, c Gradient Boosted 
Survival



Page 10 of 14Wang et al. BMC Gastroenterology          (2025) 25:376 

advanced methods into our analysis, including the 
Coxnet [37, 38], tree-based random survival forest model, 
and GBS algorithms [39–41]. These machine learning 
models are better equipped to handle high-dimensional 
data and capture non-linear relationships in survival 
analysis compared to traditional Cox models. Addition-
ally, most existing mortality prediction studies consider 
death as a binary event without accounting for time-to-
event data [42, 43]. In our study, we explicitly incorpo-
rated survival time, making full use of survival data to 
provide a more comprehensive analysis.

We found that the Coxnet model performed better than 
the other two machine learning algorithms in predicting 
both short-term and long-term mortality, consistent with 

findings by Duan et al. [44]. This suggests that advanced 
algorithms do not always outperform traditional ones 
[45], likely due to insufficient outcome events limiting 
their performance [46]. We observed that increased waist 
circumference and FORNS indices were associated with 
higher all-cause mortality risk in fatty liver patients [47, 
48]. Although no studies have linked AAR to mortality 
in fatty liver, its association with liver fibrosis—a major 
cause of liver-related deaths—supports our findings. 
Additionally, consistent with Huang et al. [49], individu-
als who smoked over 100 cigarettes had higher mortality 
risks.

In our findings, age emerged as a significant fac-
tor influencing all-cause mortality in MAFLD patients. 

Fig. 4 Summary plot of optimal model by SHAP
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However, modifiable behavioral factors, such as waist cir-
cumference and smoking quantity, also play critical roles 
in mortality risk. From a clinical perspective, our find-
ings suggest that practitioners should pay greater atten-
tion to the liver fibrosis indicators like FORNS and AAR, 
both of which were widely used in related research and 
clinical management, which were also aligns with the rec-
ommendation of screening liver fibrosis for individuals 
with hepatic steatosis in clinical practice [50]. To further 
achieve clinical integration, developing the threshold of 
these key contributors needed to be collaborated with 
clinicians.

This study has several limitations. First, while we 
using 1000 bootstrap procedure in internal validation 
strengthens the credibility of our results, the gener-
alizability and real-world applicability of our model 
for managing MAFLD individuals remain to be estab-
lished. Therefore, prospective external validation using 

multicenter and large-scale datasets is essential to fur-
ther confirm its clinical utility and support its future 
implementation. Second, the survival data lacked 
information on cause-specific mortality, preventing us 
from evaluating the model’s performance in predict-
ing specific causes of death in MAFLD. Third, although 
SHAP method enabled the identification of key factors 
contributing to the all-cause mortality of MAFLD indi-
viduals, and the associations between them were fur-
ther explored, it is important to acknowledge that these 
findings were observational. Future experimental stud-
ies are warranted to elucidate the underlying biologi-
cal mechanisms and validate these associations, which 
may facilitate the development of targeted interven-
tions and precision management strategies for MAFLD 
individuals. Finally, future research should address gap 
by focusing on specific mortality causes and explor-
ing the use of advanced deep learning models and 

Fig. 5 Restricted cubic spline for the top four continuous variables of optimal model for predicting all-cause mortality
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metaheuristic algorithms for model optimization and 
improved predictive accuracy.

Conclusion
In this study, we developed and compared three machine 
learning models for predicting all-cause mortality in 
MAFLD individuals, identifying the Coxnet model as the 
optimal choice. It is worth noting that while the regu-
larization employed by the Coxnet model helps address 
challenges associated with high-dimensional data, its 
ability to capture complex nonlinear relationships may be 
limited compared to tree-based models such as RSF and 
GBM, suggesting a potential direction for future research 
to further enhance model performance. Using SHAP 
analysis, we highlighted the top five variables contribut-
ing most to all-cause mortality: age, FORNS, waist cir-
cumference, and AAR, which exhibited significant linear 
relationships and clear threshold effects, while smoking 
quantity showed distinct survival patterns. To the best 
of our knowledge, this is the first study to leverage pro-
spective data and machine learning algorithms to predict 
all-cause mortality in MAFLD individuals. These findings 
provide valuable insights for community health practi-
tioners to intervene in modifiable risk factors, thereby 
improving the survival and quality of life of MAFLD 
individuals.
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